The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a comp...The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems.展开更多
Previous studies have reported that individual differences in reappraisal use are associated with partJcular patterns of neural activity. We hypothesized that if 'high reappraisers' (individuals who use reappraisal...Previous studies have reported that individual differences in reappraisal use are associated with partJcular patterns of neural activity. We hypothesized that if 'high reappraisers' (individuals who use reappraisal well in a behavioral experiment) completed two training sessions, they would exhibit more reliable patterns of neural activity related to cognitive reappraisal. In the present study, 13 high reappraisers were selected from 27 healthy volunteers through an initial behavioral experiment (first training) followed by a functional MRI experiment (second training). Emotional images selected from the International Affective Picture System were used for both the behavioral and functional MRI sessions of the experiment. The behavioral results revealed that reappraisal reduced subjective unpleasantness. The functional MRI results revealed that the cognitive reappraisal used by high reappraisers decreased the activation of emotion-responsive regions, including the amygdala, insula, and cingulate gyrus, and increased the activation of regulation-related regions, including the inferior prefrontal cortex, orbital prefrontal cortex, and dorsal medial prefrontal cortex. These findings suggest the involvement of inferior orbital and dorsal medial prefrontal cortex in constructing reappraisal strategies that modulate activity in emotion-processing systems.展开更多
Organoids,miniature and simplified in vitro model systems that mimic the structure and function of organs,have attracted considerable interest due to their promising applications in disease modeling,drug screening,per...Organoids,miniature and simplified in vitro model systems that mimic the structure and function of organs,have attracted considerable interest due to their promising applications in disease modeling,drug screening,personalized medicine,and tissue engineering.Despite the substantial success in cultivating physiologically relevant organoids,challenges remain concerning the complexities of their assembly and the difficulties associated with data analysis.The advent of AI-Enabled Organoids,which interfaces with artificial intelligence(AI),holds the potential to revolutionize the field by offering novel insights and methodologies that can expedite the development and clinical application of organoids.This review succinctly delineates the fundamental concepts and mechanisms underlying AI-Enabled Organoids,summarizing the prospective applications on rapid screening of construction strategies,cost-effective extraction of multiscale image features,streamlined analysis of multi-omics data,and precise preclinical evaluation and application.We also explore the challenges and limitations of interfacing organoids with AI,and discuss the future direction of the field.Taken together,the AI-Enabled Organoids hold significant promise for advancing our understanding of organ development and disease progression,ultimately laying the groundwork for clinical application.展开更多
Cu-bearing stainless steels(SSs)with high strength,excellent plasticity,and effective antimicrobial properties hold significant potential for applications in the marine industry.In this study,Cu-bearing SSs with coppe...Cu-bearing stainless steels(SSs)with high strength,excellent plasticity,and effective antimicrobial properties hold significant potential for applications in the marine industry.In this study,Cu-bearing SSs with copper ranging from 0 to 6.0 wt%were successfully prepared using selective laser melting(SLM)technology.For the Cu-bearing SSs with different copper contents,the effect of heat treatment on the microstructural and mechanical behaviors was studied systematically.Microstructural observations revealed that the subgrain size of Cu-bearing SSs increased with heat treatment at 500℃ and 700℃ for 6 h.Furthermore,the tensile strength and elongation increased after the heat treatment temperature due to the combined effect of dislocations,twins,andε-Cu precipitated phases.Notably,after heat treatment at 700℃,the SLM4.5Cu sample exhibited an abnormal rise in tensile strength and elongation.This finding suggests that the diffusion strengthening caused byε-Cu precipitates exceeded the stacking fault energy.Consequently,the tensile strength and elongation reached 693.32 MPa and 56.94%,respectively.This work provides an efficient approach for preparing Cu-bearing SSs with exceptional strength and plasticity.展开更多
Solution equilibrium calculations were performed in this study to understand the impact of contaminant metal ions on the precipitation efficiency of selected rare earth elements(Ce^(3+),Nd^(3+),and Y^(3+))using oxalic...Solution equilibrium calculations were performed in this study to understand the impact of contaminant metal ions on the precipitation efficiency of selected rare earth elements(Ce^(3+),Nd^(3+),and Y^(3+))using oxalic acid as a precipitant.Trivalent metal ions,Al^(3+) and Fe^(3+),are found to considerably affect the precipitation efficiency of REEs.When Al^(3+) and Fe^(3+)concentrations are increased by 1×10^(−4) mol/L,in order to achieve an acceptable cerium recovery of 93%from solutions containing 1×10^(−4) mol/L Ce^(3+),oxalate dosage needs to increase by 1.2×10^(−4) and 1.68×10^(−4) mol/L,respectively.Such great impacts on the required oxalate dosage are also observed for Nd^(3+) and Y^(3+),which indicates that oxalic acid consumption and cost will be largely increased when the trivalent metal ions exist in REE-concentrated solutions.Effects of the divalent metal ions on the oxalate dosage are minimal.Furthermore,solution equilibrium calculation results show that the precipitation of Fe^(3+) and Ca^(2+)(e.g.,hematite and Ca(C_(2)O_(4))∙H_(2)O(s))likely occurs during the oxalate precipitation of REEs at relatively high pH(e.g.,pH 2.5),which will reduce rare earth oxalate product purity.In addition to the metal ions,anionic species,especially SO_(4)^(2-),are also found to negatively affect the precipitation recovery of REEs.For example,when 0.1 mol/L SO_(4)^(2-) occurs in a solution containing 1×10^(−4) mol/L Ce^(3+) and 4×10^(−4) mol/L oxalate,the pH needs to be elevated from 2.0 to 3.3 to achieve the acceptable recovery.Overall,findings from this study provide guidance for the obtainment of high-purity rare earth products from solutions containing a considerable amount of contaminant metal ions by means of oxalic acid precipitation.展开更多
Due to the increasing criticality of rare earth elements(REEs),it has become essential to recover REEs from alternative resources.In this study,systematic REEs leaching tests were performed on the calcination product ...Due to the increasing criticality of rare earth elements(REEs),it has become essential to recover REEs from alternative resources.In this study,systematic REEs leaching tests were performed on the calcination product of a coal coarse refuse using hydrochloric acid and different types of organic acid as lixiviants.Experimental results show that the recovery of REEs,especially heavy REEs(HREEs)and scandium(Sc),is improved by using selected organic acids.Citric acid and DL-malic acid afford the best leaching performances;whereas,malonic acid,oxalic acid,and DL-tartaric acid are inferior to hydrochloric acid.Results of zeta potential measurements and solution chemical equilibrium calculations show that malonic acid is more likely adsorbed on the surface of the calcined material compared with citric acid and DL-malic acid.The adsorption may reduce the effective concentration of malonic species in solution and/or increase the amount of REEs adsorbed on the surface,thereby impairing the leaching recovery.Compared with light REEs(LREEs),a stronger adsorption of the HREEs on the surface is observed from electro-kinetic test results.This finding explains why organic acids impose a more positive impact on the leaching recovery of HREEs,By complexing with the HREEs,organic acids can keep the metal ions in solution and improve the leaching recovery.The adsorption of Sc^(3+)on the surface is the lowest compared with other REEs.Therefore,rather than complexing,the organic anionic species likely play a function of solubilizing Sc from the solid,which is similar to that of hydrogen ions.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52175019)Beijing Municipal Natural Science Foundations(Grant Nos.3212009 and L222038)Beijing Municipal Key Laboratory of Space-ground Interconnection and Convergence of China.
文摘The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems.
基金supported by the National Natural Science Foundation of China, No. 30970890, 30770708 and 31100746the Scientific Foundation of Institute of Psychology,Chinese Academy of Sciences, No. Y0CX451S01+2 种基金the National Basic Research Program of China, No. 2010CB833904the Knowledge Innovation Program of the Chinese Academy of Sciences, No. KSCX2-EW-J-8Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences
文摘Previous studies have reported that individual differences in reappraisal use are associated with partJcular patterns of neural activity. We hypothesized that if 'high reappraisers' (individuals who use reappraisal well in a behavioral experiment) completed two training sessions, they would exhibit more reliable patterns of neural activity related to cognitive reappraisal. In the present study, 13 high reappraisers were selected from 27 healthy volunteers through an initial behavioral experiment (first training) followed by a functional MRI experiment (second training). Emotional images selected from the International Affective Picture System were used for both the behavioral and functional MRI sessions of the experiment. The behavioral results revealed that reappraisal reduced subjective unpleasantness. The functional MRI results revealed that the cognitive reappraisal used by high reappraisers decreased the activation of emotion-responsive regions, including the amygdala, insula, and cingulate gyrus, and increased the activation of regulation-related regions, including the inferior prefrontal cortex, orbital prefrontal cortex, and dorsal medial prefrontal cortex. These findings suggest the involvement of inferior orbital and dorsal medial prefrontal cortex in constructing reappraisal strategies that modulate activity in emotion-processing systems.
基金financially supported by National Natural Science Foundation of China(82230071,82172098)Shanghai Committee of Science and Technology(23141900600,Laboratory Animal Research Project).
文摘Organoids,miniature and simplified in vitro model systems that mimic the structure and function of organs,have attracted considerable interest due to their promising applications in disease modeling,drug screening,personalized medicine,and tissue engineering.Despite the substantial success in cultivating physiologically relevant organoids,challenges remain concerning the complexities of their assembly and the difficulties associated with data analysis.The advent of AI-Enabled Organoids,which interfaces with artificial intelligence(AI),holds the potential to revolutionize the field by offering novel insights and methodologies that can expedite the development and clinical application of organoids.This review succinctly delineates the fundamental concepts and mechanisms underlying AI-Enabled Organoids,summarizing the prospective applications on rapid screening of construction strategies,cost-effective extraction of multiscale image features,streamlined analysis of multi-omics data,and precise preclinical evaluation and application.We also explore the challenges and limitations of interfacing organoids with AI,and discuss the future direction of the field.Taken together,the AI-Enabled Organoids hold significant promise for advancing our understanding of organ development and disease progression,ultimately laying the groundwork for clinical application.
基金This work was financially supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.92166112)the Project of MOE Key Lab of Disaster Forecast and Control in Engineering in Jinan University(Grant No.20200904006)+6 种基金the Guangdong Province Basic and Applied Basic Research Foundation(Grant No.2020B1515420004)the Guangxi Key Laboratory of Information Materials(Grant No.211003-K)the Open Project Program of the State Key Laboratory of Mechanical Transmissions in Chongqing University(Grant No.SKLMT-MSKFKT-202102)the Open Project Program of Wuhan National Laboratory for Optoelectronics(Grant No.2021WNLOKF010)the supported by the Fundamental Research Funds for the Central Universities(Grant No.21622110)the Stable Support Project of Shenzhen Higher Education Institutions(Grant No.SZWD2021008)the Stable Support Project of Transversal college-enterprise cooperation projects(Grant No.HT20220613002).
文摘Cu-bearing stainless steels(SSs)with high strength,excellent plasticity,and effective antimicrobial properties hold significant potential for applications in the marine industry.In this study,Cu-bearing SSs with copper ranging from 0 to 6.0 wt%were successfully prepared using selective laser melting(SLM)technology.For the Cu-bearing SSs with different copper contents,the effect of heat treatment on the microstructural and mechanical behaviors was studied systematically.Microstructural observations revealed that the subgrain size of Cu-bearing SSs increased with heat treatment at 500℃ and 700℃ for 6 h.Furthermore,the tensile strength and elongation increased after the heat treatment temperature due to the combined effect of dislocations,twins,andε-Cu precipitated phases.Notably,after heat treatment at 700℃,the SLM4.5Cu sample exhibited an abnormal rise in tensile strength and elongation.This finding suggests that the diffusion strengthening caused byε-Cu precipitates exceeded the stacking fault energy.Consequently,the tensile strength and elongation reached 693.32 MPa and 56.94%,respectively.This work provides an efficient approach for preparing Cu-bearing SSs with exceptional strength and plasticity.
文摘Solution equilibrium calculations were performed in this study to understand the impact of contaminant metal ions on the precipitation efficiency of selected rare earth elements(Ce^(3+),Nd^(3+),and Y^(3+))using oxalic acid as a precipitant.Trivalent metal ions,Al^(3+) and Fe^(3+),are found to considerably affect the precipitation efficiency of REEs.When Al^(3+) and Fe^(3+)concentrations are increased by 1×10^(−4) mol/L,in order to achieve an acceptable cerium recovery of 93%from solutions containing 1×10^(−4) mol/L Ce^(3+),oxalate dosage needs to increase by 1.2×10^(−4) and 1.68×10^(−4) mol/L,respectively.Such great impacts on the required oxalate dosage are also observed for Nd^(3+) and Y^(3+),which indicates that oxalic acid consumption and cost will be largely increased when the trivalent metal ions exist in REE-concentrated solutions.Effects of the divalent metal ions on the oxalate dosage are minimal.Furthermore,solution equilibrium calculation results show that the precipitation of Fe^(3+) and Ca^(2+)(e.g.,hematite and Ca(C_(2)O_(4))∙H_(2)O(s))likely occurs during the oxalate precipitation of REEs at relatively high pH(e.g.,pH 2.5),which will reduce rare earth oxalate product purity.In addition to the metal ions,anionic species,especially SO_(4)^(2-),are also found to negatively affect the precipitation recovery of REEs.For example,when 0.1 mol/L SO_(4)^(2-) occurs in a solution containing 1×10^(−4) mol/L Ce^(3+) and 4×10^(−4) mol/L oxalate,the pH needs to be elevated from 2.0 to 3.3 to achieve the acceptable recovery.Overall,findings from this study provide guidance for the obtainment of high-purity rare earth products from solutions containing a considerable amount of contaminant metal ions by means of oxalic acid precipitation.
文摘Due to the increasing criticality of rare earth elements(REEs),it has become essential to recover REEs from alternative resources.In this study,systematic REEs leaching tests were performed on the calcination product of a coal coarse refuse using hydrochloric acid and different types of organic acid as lixiviants.Experimental results show that the recovery of REEs,especially heavy REEs(HREEs)and scandium(Sc),is improved by using selected organic acids.Citric acid and DL-malic acid afford the best leaching performances;whereas,malonic acid,oxalic acid,and DL-tartaric acid are inferior to hydrochloric acid.Results of zeta potential measurements and solution chemical equilibrium calculations show that malonic acid is more likely adsorbed on the surface of the calcined material compared with citric acid and DL-malic acid.The adsorption may reduce the effective concentration of malonic species in solution and/or increase the amount of REEs adsorbed on the surface,thereby impairing the leaching recovery.Compared with light REEs(LREEs),a stronger adsorption of the HREEs on the surface is observed from electro-kinetic test results.This finding explains why organic acids impose a more positive impact on the leaching recovery of HREEs,By complexing with the HREEs,organic acids can keep the metal ions in solution and improve the leaching recovery.The adsorption of Sc^(3+)on the surface is the lowest compared with other REEs.Therefore,rather than complexing,the organic anionic species likely play a function of solubilizing Sc from the solid,which is similar to that of hydrogen ions.