Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant...Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant impacts on soil respiration.However,there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity.Based on a mesh exclusion method,soil respirations derived from roots,arbuscular mycorrhizal(AM)mycelium,and free-living microbes were investigated in a pure Moso bamboo forest(expanded),an adjacent broadleaved forest(nonexpanded),and a mixed bamboo-broadleaved forest(expanding).Our results showed that bamboo expansion decreased the cumulative CO_(2)effluxes from total soil respiration,root respiration and soil heterotrophic respiration(by 19.01%,30.34%,and 29.92%on average),whereas increased those from AM mycelium(by 78.67%in comparison with the broadleaved forests).Bamboo expansion significantly decreased soil organic carbon(C)content,bacterial and fungal abundances,and enzyme activities involved in C,N and P cycling whereas enhanced the interactive relationships among bacterial communities.In contrast,the ingrowth of AM mycelium increased the activities ofβ-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities.Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances.In summary,our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux,which may potentially increase soil C loss from AM mycelial pathway.展开更多
<div style="text-align:justify;"> Low-density parity-check code (LDPC) not only has good performance approaching the Shannon limit, but also has low decoding complexity and flexible structure. It is a ...<div style="text-align:justify;"> Low-density parity-check code (LDPC) not only has good performance approaching the Shannon limit, but also has low decoding complexity and flexible structure. It is a research hot-spot in the field of channel coding in recent years and has a wide range of application prospects in optical communication systems. In this paper, the decoding aspects and performance of LDPC codes are analyzed and compared according to the bit error rate (BER) of LDPC codes. The computer simulation was carried out under additive white Gaussian noise (AWGN) channel and binary phase shift keying (BPSK) modulation. Through theoretical analysis and simulation results, this paper explores the way of multi-rate LDPC decoding. </div>展开更多
Intensive management is known to markedly alter soil carbon(C)storage and turnover in Moso bamboo forests compared with extensive management.However,the effects of intensive management on soil respiration(RS)component...Intensive management is known to markedly alter soil carbon(C)storage and turnover in Moso bamboo forests compared with extensive management.However,the effects of intensive management on soil respiration(RS)components remain unclear.This study aimed to evaluate the changes in different RScomponents(root,mycorrhizal,and free-living microorganism respiration)in Moso bamboo forests under extensive and intensive management practices.A1-year in-situ microcosm experiment was conducted to quantify the RScomponents in Moso bamboo forests under the two management practices using mesh screens of varying sizes.The results showed that the total RSand its components exhibited similar seasonal variability between the two management practices.Compared with extensive management,intensive management significantly increased cumulative respiration from mycorrhizal fungi by 36.73%,while decreased cumulative respiration from free-living soil microorganisms by 8.97%.Moreover,the abundance of arbuscular mycorrhizal fungi(AMF)increased by 43.38%,but bacterial and fungal abundances decreased by 21.65%and 33.30%,respectively,under intensive management.Both management practices significantly changed the bacterial community composition,which could be mainly explained by soil pH and available potassium.Mycorrhizal fungi and intensive management affected the interrelationships between bacterial members.Structural equation modeling indicated that intensive management changed the cumulative RSby elevating AMF abundance and lowering bacterial abundance.We concluded that intensive management reduced the microbial respiration-derived C loss,but increased mycorrhizal respiration-derived C loss.展开更多
基金funded by the National Natural Science Foundation of China(Nos.31971631,32271850)Natural Science Foundation of Zhejiang Province under grant number LZ22C160001.
文摘Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant impacts on soil respiration.However,there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity.Based on a mesh exclusion method,soil respirations derived from roots,arbuscular mycorrhizal(AM)mycelium,and free-living microbes were investigated in a pure Moso bamboo forest(expanded),an adjacent broadleaved forest(nonexpanded),and a mixed bamboo-broadleaved forest(expanding).Our results showed that bamboo expansion decreased the cumulative CO_(2)effluxes from total soil respiration,root respiration and soil heterotrophic respiration(by 19.01%,30.34%,and 29.92%on average),whereas increased those from AM mycelium(by 78.67%in comparison with the broadleaved forests).Bamboo expansion significantly decreased soil organic carbon(C)content,bacterial and fungal abundances,and enzyme activities involved in C,N and P cycling whereas enhanced the interactive relationships among bacterial communities.In contrast,the ingrowth of AM mycelium increased the activities ofβ-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities.Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances.In summary,our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux,which may potentially increase soil C loss from AM mycelial pathway.
文摘<div style="text-align:justify;"> Low-density parity-check code (LDPC) not only has good performance approaching the Shannon limit, but also has low decoding complexity and flexible structure. It is a research hot-spot in the field of channel coding in recent years and has a wide range of application prospects in optical communication systems. In this paper, the decoding aspects and performance of LDPC codes are analyzed and compared according to the bit error rate (BER) of LDPC codes. The computer simulation was carried out under additive white Gaussian noise (AWGN) channel and binary phase shift keying (BPSK) modulation. Through theoretical analysis and simulation results, this paper explores the way of multi-rate LDPC decoding. </div>
基金financially supported by the National Natural Science Foundation of China(Nos.31971631,41977083,and 41671252)。
文摘Intensive management is known to markedly alter soil carbon(C)storage and turnover in Moso bamboo forests compared with extensive management.However,the effects of intensive management on soil respiration(RS)components remain unclear.This study aimed to evaluate the changes in different RScomponents(root,mycorrhizal,and free-living microorganism respiration)in Moso bamboo forests under extensive and intensive management practices.A1-year in-situ microcosm experiment was conducted to quantify the RScomponents in Moso bamboo forests under the two management practices using mesh screens of varying sizes.The results showed that the total RSand its components exhibited similar seasonal variability between the two management practices.Compared with extensive management,intensive management significantly increased cumulative respiration from mycorrhizal fungi by 36.73%,while decreased cumulative respiration from free-living soil microorganisms by 8.97%.Moreover,the abundance of arbuscular mycorrhizal fungi(AMF)increased by 43.38%,but bacterial and fungal abundances decreased by 21.65%and 33.30%,respectively,under intensive management.Both management practices significantly changed the bacterial community composition,which could be mainly explained by soil pH and available potassium.Mycorrhizal fungi and intensive management affected the interrelationships between bacterial members.Structural equation modeling indicated that intensive management changed the cumulative RSby elevating AMF abundance and lowering bacterial abundance.We concluded that intensive management reduced the microbial respiration-derived C loss,but increased mycorrhizal respiration-derived C loss.