CRISPR/Cas9 technology is a powerful genome manipulation tool in insects.However,little is known about whether mRNA and protein of a target gene are completely cleared in homozygous mutants.This study generated homozy...CRISPR/Cas9 technology is a powerful genome manipulation tool in insects.However,little is known about whether mRNA and protein of a target gene are completely cleared in homozygous mutants.This study generated homozygous mutants of the insulin receptor gene 2(NlInR2)in the brown planthopper(Nilaparvata lugens)using CRISPR/Cas9 genome editing.Both frameshift mutants,E5_D17 and E6_I7,differentiated towards long wings,but there were differences in wing morphology,with E5_D17 showing wing deformities.Subsequent investigations revealed the presence of residual expression of NlInR2 mRNA in both mutants,as well as the occurrence of spliceosomes featuring exon skipping splicing in E5_D17.Additionally,the E5_D17 exhibited the detection of N-terminally truncated NlInR2 protein.RNA interference experiments indicated that the knockdown of NlInR2 expression in the E5_D17 mutant line increased the proportion of wing deformities from 11.1 to 65.6%,suggesting that the residual NlInR2 mRNA of the E5_D17 mutant might have retained some genetic functions.Our results imply that systematic characterization of residual protein expression or function in CRISPR/Cas9-generated mutant lines is necessary for phenotypic interpretation.展开更多
Background:Despite the success of tyrosine kinase inhibitors in chronic myeloid leukemia(CML)therapy,CML still faces the challenges of drug resistance and progression to blast crisis.Twenty-five percent of patients ha...Background:Despite the success of tyrosine kinase inhibitors in chronic myeloid leukemia(CML)therapy,CML still faces the challenges of drug resistance and progression to blast crisis.Twenty-five percent of patients have imatinib resistance and treatment difficulties due to heterogeneity after progression,but little is known about the mechanism.A key transcription factor in hematopoiesis,MYB,has been reported to increase abnormally in several types of aggressive blood disorders including CML.Methods:This study used a zebrafish model to explore the relationship between BCR/ABL1 and c-myb in CML progression.A CML zebrafish model was crossed with a c-myb hyperactivity transgenic line.Results:It was found that both exogenous BCR/ABL1 and c-myb could up-regulate the expression of neutrophil-related genes.More seriously,neutrophil accumulation was observed when BCR/ABL1 was combined with c-myb overexpression.Further studies showed that c-myb may be one of the downstream targets of BCR/ABL1 and the effect of BCR/ABL1 on neutrophils was c-myb dependent.Taking advantage of this inheritable in vivo model,it was shown that a combination of imatinib and flavopiridol,a cyclin-dependent kinase inhibitor targeting MYB,could more effectively alleviate the aggressive phenotype of the double transgene line.Conclusion:In summary,this study suggests that c-myb acts downstream of BCR/ABL1 and is involved in CML progression and is therefore a risk factor and a valuable target for the treatment of CML progression.The model used in the study could be helpful in high-throughput drug screening in CML transformation.展开更多
Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-fe...Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-feeding of breast milk.Hazard Vulnerability Analysis based on the Kaiser model was applied to investigate and evaluate the risk events.Results:High-risk events include breast milk quality inspection,hand hygiene during collection,disinfection of collectors,cold chain management,hand hygiene during the reception,breast milk closed-loop management,and post-collection disposal.Root cause analysis of high-risk events was conducted and breast milk management strategies outside the hospital and within the neonatal department were proposed.Conclusion:Hazard Vulnerability Analysis based on the Kaiser model can identify and assess neonatal breast milk management risks effectively,which helps improve the management of neonatal breast milk.It is conducive to the safe development and promotion of bottle feeding of breast milk for neonates,ensuring the quality of medical services and the safety of children.展开更多
Although vaccines have been developed,mutations of SARS-CoV-2,especially the dominant B.1.617.2(delta)and B.1.529(omicron)strains with more than 30 mutations on their spike protein,have caused a significant decline in...Although vaccines have been developed,mutations of SARS-CoV-2,especially the dominant B.1.617.2(delta)and B.1.529(omicron)strains with more than 30 mutations on their spike protein,have caused a significant decline in prophylaxis,calling for the need for drug improvement.Antibodies are drugs preferentially used in infectious diseases and are easy to get from immunized organisms.The current study combined molecular modeling and single memory B cell sequencing to assess candidate sequences before experiments,providing a strategy for the fabrication of SARS-CoV-2 neutralizing antibodies.A total of 128 sequences were obtained after sequencing 196 memory B cells,and 42 sequences were left after merging extremely similar ones and discarding incomplete ones,followed by homology modeling of the antibody variable region.Thirteen candidate sequences were expressed,of which three were tested positive for receptor binding domain recognition but only one was confirmed as having broad neutralization against several SARS-CoV-2 variants.The current study successfully obtained a SARS-CoV-2 antibody with broad neutralizing abilities and provided a strategy for antibody development in emerging infectious diseases using single memory B cell BCR sequencing and computer assistance in antibody fabrication.展开更多
基金the National Natural Science Foundation of China(31730073).
文摘CRISPR/Cas9 technology is a powerful genome manipulation tool in insects.However,little is known about whether mRNA and protein of a target gene are completely cleared in homozygous mutants.This study generated homozygous mutants of the insulin receptor gene 2(NlInR2)in the brown planthopper(Nilaparvata lugens)using CRISPR/Cas9 genome editing.Both frameshift mutants,E5_D17 and E6_I7,differentiated towards long wings,but there were differences in wing morphology,with E5_D17 showing wing deformities.Subsequent investigations revealed the presence of residual expression of NlInR2 mRNA in both mutants,as well as the occurrence of spliceosomes featuring exon skipping splicing in E5_D17.Additionally,the E5_D17 exhibited the detection of N-terminally truncated NlInR2 protein.RNA interference experiments indicated that the knockdown of NlInR2 expression in the E5_D17 mutant line increased the proportion of wing deformities from 11.1 to 65.6%,suggesting that the residual NlInR2 mRNA of the E5_D17 mutant might have retained some genetic functions.Our results imply that systematic characterization of residual protein expression or function in CRISPR/Cas9-generated mutant lines is necessary for phenotypic interpretation.
基金National Key R&D Program of ChinaGrant/Award Number:2018YFA0801000+5 种基金National Natural Science Foundation of ChinaGrant/Award Number:32170830Natural Science Foundation of Guangdong ProvinceChinaGrant/Award Number:2021A1515010422South China University of Technology。
文摘Background:Despite the success of tyrosine kinase inhibitors in chronic myeloid leukemia(CML)therapy,CML still faces the challenges of drug resistance and progression to blast crisis.Twenty-five percent of patients have imatinib resistance and treatment difficulties due to heterogeneity after progression,but little is known about the mechanism.A key transcription factor in hematopoiesis,MYB,has been reported to increase abnormally in several types of aggressive blood disorders including CML.Methods:This study used a zebrafish model to explore the relationship between BCR/ABL1 and c-myb in CML progression.A CML zebrafish model was crossed with a c-myb hyperactivity transgenic line.Results:It was found that both exogenous BCR/ABL1 and c-myb could up-regulate the expression of neutrophil-related genes.More seriously,neutrophil accumulation was observed when BCR/ABL1 was combined with c-myb overexpression.Further studies showed that c-myb may be one of the downstream targets of BCR/ABL1 and the effect of BCR/ABL1 on neutrophils was c-myb dependent.Taking advantage of this inheritable in vivo model,it was shown that a combination of imatinib and flavopiridol,a cyclin-dependent kinase inhibitor targeting MYB,could more effectively alleviate the aggressive phenotype of the double transgene line.Conclusion:In summary,this study suggests that c-myb acts downstream of BCR/ABL1 and is involved in CML progression and is therefore a risk factor and a valuable target for the treatment of CML progression.The model used in the study could be helpful in high-throughput drug screening in CML transformation.
文摘Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-feeding of breast milk.Hazard Vulnerability Analysis based on the Kaiser model was applied to investigate and evaluate the risk events.Results:High-risk events include breast milk quality inspection,hand hygiene during collection,disinfection of collectors,cold chain management,hand hygiene during the reception,breast milk closed-loop management,and post-collection disposal.Root cause analysis of high-risk events was conducted and breast milk management strategies outside the hospital and within the neonatal department were proposed.Conclusion:Hazard Vulnerability Analysis based on the Kaiser model can identify and assess neonatal breast milk management risks effectively,which helps improve the management of neonatal breast milk.It is conducive to the safe development and promotion of bottle feeding of breast milk for neonates,ensuring the quality of medical services and the safety of children.
基金supported by the Jiangsu Provincial Key Research and Development Program (Grant No.BE2020616)the National Key R&D Program of China (Grant No.2018YFC1200603)+1 种基金the National Science and Technology Major Project (Grant No.2019SWAQ05-5-4)Jiangsu Key Lab of Cancer Biomarkers,Prevention and Treatment,Collaborative Innovation Center for Cancer Personalized Medicine,Nanjing Medical University.
文摘Although vaccines have been developed,mutations of SARS-CoV-2,especially the dominant B.1.617.2(delta)and B.1.529(omicron)strains with more than 30 mutations on their spike protein,have caused a significant decline in prophylaxis,calling for the need for drug improvement.Antibodies are drugs preferentially used in infectious diseases and are easy to get from immunized organisms.The current study combined molecular modeling and single memory B cell sequencing to assess candidate sequences before experiments,providing a strategy for the fabrication of SARS-CoV-2 neutralizing antibodies.A total of 128 sequences were obtained after sequencing 196 memory B cells,and 42 sequences were left after merging extremely similar ones and discarding incomplete ones,followed by homology modeling of the antibody variable region.Thirteen candidate sequences were expressed,of which three were tested positive for receptor binding domain recognition but only one was confirmed as having broad neutralization against several SARS-CoV-2 variants.The current study successfully obtained a SARS-CoV-2 antibody with broad neutralizing abilities and provided a strategy for antibody development in emerging infectious diseases using single memory B cell BCR sequencing and computer assistance in antibody fabrication.