期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization
1
作者 Xinchuan Yuan Guannan shen +4 位作者 Juncheng Huo Sitong Chen wenyuan shen Chengcheng Zhang Mingjie Jin 《Journal of Bioresources and Bioproducts》 EI CSCD 2024年第4期548-564,共17页
Many effective pretreatment methods (such as dilute acid, dilute alkali, ionic liquids, etc.) have been developed for lignocellulose upgrading, but several defaults of low working mass, high sugar loss and extra cost ... Many effective pretreatment methods (such as dilute acid, dilute alkali, ionic liquids, etc.) have been developed for lignocellulose upgrading, but several defaults of low working mass, high sugar loss and extra cost of solid-liquid separation and water washing hinder their large-scale applica- tion in industry. Besides, the valorization of lignin-rich residue from pretreated biomass after hy- drolysis or fermentation greatly contributes to the economy and sustainability of lignocellulosic biorefinery, which is usually underestimated. This study developed a densification pretreatment with binary chemicals (densifying lignocellulosic biomass with sulfuric acid (SA) and metal salt (MS) followed by autoclave treatment ((DLCA(SA-MS)), which was conducted under mild con- dition (121 ℃) with a biomass working mass as high as 400 kg/m^(3) . The DLCA(SA-MS) biomass achieved over 95% sugar retention, 90% enzymatic sugar conversion and a high concentration of fermentable sugar (212.3 g/L) with superior fermentability. Furthermore, bio-adsorbent de- rived from DLCA(SA-MS) biomass residue was highly adsorptive and suitable for dyeing wastew- ater treatment, providing a feasible and eco-friendly method for lignin-rich residue valorization. These findings indicated that DLCA(SA-MS) pretreatment enables the full-component utilization of biomass and boosts the economic viability of lignocellulosic biorefinery. 展开更多
关键词 Lignocellulosic biorefinery Densification pretreatment Binary chemicals Enzymatic hydrolysis and fermentation Full-component utilization Bio-adsorbent
下载PDF
ROS-responsive nanoparticle delivery of ferroptosis inhibitor prodrug to facilitate mesenchymal stem cell-mediated spinal cord injury repair
2
作者 Renshuai Hua Chenxi Zhao +7 位作者 Zhengyu Xu Derong Liu wenyuan shen Wenlu Yuan Yan Li Jun Ma Zhishuo Wang Shiqing Feng 《Bioactive Materials》 SCIE CSCD 2024年第8期438-454,共17页
Spinal cord injury(SCI)is a traumatic condition that results in impaired motor and sensory function.Ferroptosis is one of the main causes of neural cell death and loss of neurological function in the spinal cord,and f... Spinal cord injury(SCI)is a traumatic condition that results in impaired motor and sensory function.Ferroptosis is one of the main causes of neural cell death and loss of neurological function in the spinal cord,and ferroptosis inhibitors are effective in reducing inflammation and repairing SCI.Although human umbilical cord mesenchymal stem cells(Huc-MSCs)can ameliorate inflammatory microenvironments and promote neural regeneration in SCI,their efficacy is greatly limited by the local microenvironment after SCI.Therefore,in this study,we constructed a drug-release nanoparticle system with synergistic Huc-MSCs and ferroptosis inhibitor,in which we anchored Huc-MSCs by a Tz-A6 peptide based on the CD44-targeting sequence,and combined with the reactive oxygen species(ROS)-responsive drug nanocarrier mPEG-b-Lys-BECI-TCO at the other end for SCI repair.Meanwhile,we also modified the classic ferroptosis inhibitor Ferrostatin-1(Fer-1)and synthesized a new prodrug Feborastatin-1(Feb-1).The results showed that this treatment regimen significantly inhibited the ferroptosis and inflammatory response after SCI,and promoted the recovery of neurological function in rats with SCI.This study developed a combination therapy for the treatment of SCI and also provides a new strategy for the construction of a drug-coordinated cell therapy system. 展开更多
关键词 Spinal cord injury Huc-MSCs ROS-Responsive nanoparticles Ferroptosis inhibitor
原文传递
Autologous exosome facilitates load and target delivery of bioactive peptides to repair spinal cord injury 被引量:4
3
作者 Ning Ran Wenxiang Li +13 位作者 Renjie Zhang Caorui Lin Jianping Zhang Zhijian Wei Zonghao Li Zhongze Yuan Min Wang Baoyou Fan wenyuan shen Xueying Li Hengxing Zhou Xue Yao Xiaohong Kong Shiqing Feng 《Bioactive Materials》 SCIE CSCD 2023年第7期766-782,共17页
Spinal cord injury(SCI)causes motor,sensory and automatic impairment due to rarely axon regeneration.Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal rege... Spinal cord injury(SCI)causes motor,sensory and automatic impairment due to rarely axon regeneration.Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal regenerative ability and disconnection of neural elements after injury,as well as the limited systemic drug delivery efficiency caused by blood spinal cord barrier.To develop an effective non-invasive treatment strategy for SCI in clinic,we generated an autologous plasma exosome(AP-EXO)based biological scaffold where AP-EXO was loaded with neuron targeting peptide(RVG)and growth-facilitating peptides(ILP and ISP).This scaffold can be targeted delivered to neurons in the injured area and elicit robust axon regrowth across the lesion core to the levels over 30-fold greater than naïve treatment,thus reestablish the intraspinal circuits and promote motor functional recovery after spinal cord injury in mice.More importantly,in ex vivo,human plasma exosomes(HP-EXO)loaded with combinatory peptides of RVG,ILP and ISP showed safety and no liver and kidney toxicity in the application to nude SCI mice.Combining the efficacy and safety,the AP-EXO-based personalized treatment confers functional recovery after SCI and showed immense promising in biomedical applications in treating SCI.It is helpful to expand the application of combinatory peptides and human plasma derived autologous exosomes in promoting regeneration and recovery upon SCI treatment. 展开更多
关键词 Spinal cord injury Targeted repair Autologous plasma exosome Drug loading Axon regeneration
原文传递
Spastin is required for human immunodeficiency virus-1 efficient replication through cooperation with the endosomal sorting complex required for transport(ESCRT)protein 被引量:1
4
作者 wenyuan shen Chang Liu +4 位作者 Yue Hu Qian Ding Jiabin Feng Zhou Liu Xiaohong Kong 《Virologica Sinica》 SCIE CAS CSCD 2023年第3期448-458,共11页
Human immunodeficiency virus-1(HIV-1)encodes simply 15 proteins and thus depends on multiple host cellular factors for virus reproduction.Spastin,a microtubule severing protein,is an identified HIV-1 dependency factor... Human immunodeficiency virus-1(HIV-1)encodes simply 15 proteins and thus depends on multiple host cellular factors for virus reproduction.Spastin,a microtubule severing protein,is an identified HIV-1 dependency factor,but the mechanism regulating HIV-1 is unclear.Here,the study showed that knockdown of spastin inhibited the production of the intracellular HIV-1 Gag protein and new virions through enhancing Gag lysosomal degradation.Further investigation showed that increased sodium tolerance 1(IST1),the subunit of endosomal sorting complex required for transport(ESCRT),could interact with the MIT domain of spastin to regulate the intracellular Gag production.In summary,spastin is required for HIV-1 replication,while spastin-IST1 interaction facilitates virus production by regulating HIV-1 Gag intracellular trafficking and degradation.Spastin may serve as new target for HIV-1 prophylactic and therapy. 展开更多
关键词 HIV-1 replication SPASTIN Gag production Lysosomal degradation Endosomal sorting complex required for transport(ESCRT)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部