Background:Previous studies have established the role of 2-oxoglutarate and Fe(II)-dependent oxygenase domain–containing protein 1(OGFOD1)in oncogenesis.The objective of this investigation was to discern the diagnost...Background:Previous studies have established the role of 2-oxoglutarate and Fe(II)-dependent oxygenase domain–containing protein 1(OGFOD1)in oncogenesis.The objective of this investigation was to discern the diagnostic and prognostic relevance of OGFOD1 within the context of bladder cancer(BLCA)using bioinformatics methodologies.Methods:We collected RNA sequencing data from The Cancer Genome Atlas database and verified it using the GSE13507 dataset.Immunohistochemical analysis was based on data from the human protein atlas,and the protein-protein interaction network was constructed using the STRING database.Bioinformatics analysis was performed using the R application,analyzing the correlation between clinical characteristics and OGFOD1 expression,exploring the potential mechanisms of OGFOD1 in BLCA through Kyoto Encyclopedia of Genes and Genomes analysis,and evaluating the diagnostic and prognostic value of OGFOD1 expression in BLCA through receiver operating characteristic curve analysis,Kaplan-Meier analysis,and multivariate Cox analysis.Furthermore,a BLCA prognostic nomogram was constructed.Results:We report higher expression levels of OGFOD1 in BLCA specimens compared with those in noncancerous tissues;this can be used to predict the outcome of the disease.Further,results suggest that OGFOD1 is implicated in the activation of the peroxisome proliferator-activated receptor signaling cascade,potentially interacting with other genes linked to expression in promoting the onset and progression of BLCA.Conclusions:OGFOD1 is a promising candidate as a prognostic indicator in BLCA.展开更多
A narrow leaf mutant was isolated from transgenic rice (Oryza sativa L.) lines carrying a T-DNA insertion. The mutant is characterized by narrow leaves during its whole growth period, and was named nal9 (narrow lea...A narrow leaf mutant was isolated from transgenic rice (Oryza sativa L.) lines carrying a T-DNA insertion. The mutant is characterized by narrow leaves during its whole growth period, and was named nal9 (narrow leaf 9). The mutant also has other phenotypes, such as light green leaves at the seedling stage, reduced plant height, a small panicle and increased tillering. Genetic analysis revealed that the mutation is controlled by a single recessive gene. A hygromycin resistance assay showed that the mutation was not caused by T-DNA insertion, so a map-based cloning strategy was employed to isolate the nal9 gene. The mutant individuals from the F2 generations of a cross between the nal9mutant and Longtepu were used for mapping. With 24 F2 mutants, the nal9 gene was preliminarily mapped near the marker RM156 on the chromosome 3. New INDEL markers were then designed based on the sequence differences between japonica and indica at the region near RM156. The nal9 gene was finally located in a 69.3 kb region between the markers V239B and V239G within BAC OJ1212_C05 by chromosome walking. Sequence and expression analysis showed that an ATP-dependent CIp protease proteolytic subunit gene (CIpP) was most likely to be the nal9 gene. Furthermore, the nal9 mutation was rescued by transformation of the CIpP cDNA driven by the 35S promoter. Accordingly, the CIpP gene was identified as the NAL9 gene. Our results provide a basis for functional studies of NAL9 in future work.展开更多
hotodynamic therapy(PDT)has been drawing more and more attention in the antibacterial field.Traditional photosensitizers(PSs)tend to aggregate in aqueous media,which reduces the generation of reactive oxygen species(R...hotodynamic therapy(PDT)has been drawing more and more attention in the antibacterial field.Traditional photosensitizers(PSs)tend to aggregate in aqueous media,which reduces the generation of reactive oxygen species(ROS)and seriously affects the photodynamic efficacy.Many efforts have been made to prevent aggregation of traditional PSs.By contrast,aggregation-induced emission PSs(AIE-PSs)take advantage of aggregation to boost ROS generation and fluorescence intensity.However,the efficacies of the reported antibacterial AIE-PSs are poor.Herein,we report a new class of highly effective antibacterial AIE-PSs based on nitrobenzoic acid structure.TTVBA,a negatively charged AIE-PS,can not only selectively kill spherical bacteria(Staphylococcus aureus(S.aureus))rather than rod-shaped bacteria(Escherichia coli(E.coli)),but also be easily extended to several AIE-PSs(TTVBP1–3)with positive charges and broad-spectrum antibacterial activity.We demonstrate that TTVBP2 can kill3.0 log_(10)of S.aureus at very low concentration(125 nmol L^(-1)),TTVBP3 can kill 4.7 log_(10)of Staphylococcus epidermidis(S.epidermidis)at a concentration of 1μmol L^(-1)and 3.8 log_(10)of E.coli at 5μmol L^(-1),thus enabling them among the most effective antibacterial AIE-PSs reported so far.Meanwhile,these AIE-PSs exhibit excellent wash-free imaging ability for bacteria by simple mixing with bacteria.We thus envision that TTVBA,a nitrobenzoic acid-based extendable AIE-PS,provides a new route for the design of AIE-PSs in antibacterial treatment.展开更多
文摘Background:Previous studies have established the role of 2-oxoglutarate and Fe(II)-dependent oxygenase domain–containing protein 1(OGFOD1)in oncogenesis.The objective of this investigation was to discern the diagnostic and prognostic relevance of OGFOD1 within the context of bladder cancer(BLCA)using bioinformatics methodologies.Methods:We collected RNA sequencing data from The Cancer Genome Atlas database and verified it using the GSE13507 dataset.Immunohistochemical analysis was based on data from the human protein atlas,and the protein-protein interaction network was constructed using the STRING database.Bioinformatics analysis was performed using the R application,analyzing the correlation between clinical characteristics and OGFOD1 expression,exploring the potential mechanisms of OGFOD1 in BLCA through Kyoto Encyclopedia of Genes and Genomes analysis,and evaluating the diagnostic and prognostic value of OGFOD1 expression in BLCA through receiver operating characteristic curve analysis,Kaplan-Meier analysis,and multivariate Cox analysis.Furthermore,a BLCA prognostic nomogram was constructed.Results:We report higher expression levels of OGFOD1 in BLCA specimens compared with those in noncancerous tissues;this can be used to predict the outcome of the disease.Further,results suggest that OGFOD1 is implicated in the activation of the peroxisome proliferator-activated receptor signaling cascade,potentially interacting with other genes linked to expression in promoting the onset and progression of BLCA.Conclusions:OGFOD1 is a promising candidate as a prognostic indicator in BLCA.
基金supported by grants from the National Natural Science Foundation of China (30900790)the Important National Science & Technology Specifc Projects for Breeding New Transgenic Varieties in China (2008ZX08001-004)the Central Public-interest Scientifc Institution Basal Research Fund (2012RG002-6)
文摘A narrow leaf mutant was isolated from transgenic rice (Oryza sativa L.) lines carrying a T-DNA insertion. The mutant is characterized by narrow leaves during its whole growth period, and was named nal9 (narrow leaf 9). The mutant also has other phenotypes, such as light green leaves at the seedling stage, reduced plant height, a small panicle and increased tillering. Genetic analysis revealed that the mutation is controlled by a single recessive gene. A hygromycin resistance assay showed that the mutation was not caused by T-DNA insertion, so a map-based cloning strategy was employed to isolate the nal9 gene. The mutant individuals from the F2 generations of a cross between the nal9mutant and Longtepu were used for mapping. With 24 F2 mutants, the nal9 gene was preliminarily mapped near the marker RM156 on the chromosome 3. New INDEL markers were then designed based on the sequence differences between japonica and indica at the region near RM156. The nal9 gene was finally located in a 69.3 kb region between the markers V239B and V239G within BAC OJ1212_C05 by chromosome walking. Sequence and expression analysis showed that an ATP-dependent CIp protease proteolytic subunit gene (CIpP) was most likely to be the nal9 gene. Furthermore, the nal9 mutation was rescued by transformation of the CIpP cDNA driven by the 35S promoter. Accordingly, the CIpP gene was identified as the NAL9 gene. Our results provide a basis for functional studies of NAL9 in future work.
基金supported by the National Natural Science Foundation of China (81572944 and 81971983)the CAS/ SAFEA International Partnership Program for Creative Research Teams+1 种基金the High-Level Entrepreneurship and Innovation Talents Projects in Fujian Province (2018-8-1)the FJIRSM&IUE Joint Research Fund (RHZX-2018-004)
文摘hotodynamic therapy(PDT)has been drawing more and more attention in the antibacterial field.Traditional photosensitizers(PSs)tend to aggregate in aqueous media,which reduces the generation of reactive oxygen species(ROS)and seriously affects the photodynamic efficacy.Many efforts have been made to prevent aggregation of traditional PSs.By contrast,aggregation-induced emission PSs(AIE-PSs)take advantage of aggregation to boost ROS generation and fluorescence intensity.However,the efficacies of the reported antibacterial AIE-PSs are poor.Herein,we report a new class of highly effective antibacterial AIE-PSs based on nitrobenzoic acid structure.TTVBA,a negatively charged AIE-PS,can not only selectively kill spherical bacteria(Staphylococcus aureus(S.aureus))rather than rod-shaped bacteria(Escherichia coli(E.coli)),but also be easily extended to several AIE-PSs(TTVBP1–3)with positive charges and broad-spectrum antibacterial activity.We demonstrate that TTVBP2 can kill3.0 log_(10)of S.aureus at very low concentration(125 nmol L^(-1)),TTVBP3 can kill 4.7 log_(10)of Staphylococcus epidermidis(S.epidermidis)at a concentration of 1μmol L^(-1)and 3.8 log_(10)of E.coli at 5μmol L^(-1),thus enabling them among the most effective antibacterial AIE-PSs reported so far.Meanwhile,these AIE-PSs exhibit excellent wash-free imaging ability for bacteria by simple mixing with bacteria.We thus envision that TTVBA,a nitrobenzoic acid-based extendable AIE-PS,provides a new route for the design of AIE-PSs in antibacterial treatment.