High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350...High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350 ppm U, 140 ppm Th, and Th/U=0.52; the recommended zircon-melt partition coefficients are 81 for Du and 8.2 for DTh. In zircon from mafic and intermediate rocks, the median values are 270 ppm U, 170 ppm Th, and Th/U=0.81, and the recommended zirconmelt partition coefficients are 169 for Du and 59 for DTh. The U and Th contents and Th/U ratios of magmatic zircon are low when zircon crystallizes in equilibrium with the melt. Increasing magma temperature should promote higher Th contents relative to U contents, resulting in higher Th/U ratios for zircon in mafic to intermediate rocks than in granitic rocks. However, when zircon crystallizes in disequilibrium with the melt, U and Th are more easily able to enter the zircon lattice, and their contents and Th/U ratios depend mainly on the degree of disequilibrium. The behavior of U and Th in magmatic zircon can be used as a geochemical indicator to determine the origins and crystallization environments of magmatic zircon.展开更多
基金supported by the National Natural Science Foundation of China(Grant No. 40972058)the research grants(2008-Ⅰ-02 and 2008-Ⅱ-08)from the State Key Laboratory for Mineral Deposit Research,Nanjing University
文摘High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350 ppm U, 140 ppm Th, and Th/U=0.52; the recommended zircon-melt partition coefficients are 81 for Du and 8.2 for DTh. In zircon from mafic and intermediate rocks, the median values are 270 ppm U, 170 ppm Th, and Th/U=0.81, and the recommended zirconmelt partition coefficients are 169 for Du and 59 for DTh. The U and Th contents and Th/U ratios of magmatic zircon are low when zircon crystallizes in equilibrium with the melt. Increasing magma temperature should promote higher Th contents relative to U contents, resulting in higher Th/U ratios for zircon in mafic to intermediate rocks than in granitic rocks. However, when zircon crystallizes in disequilibrium with the melt, U and Th are more easily able to enter the zircon lattice, and their contents and Th/U ratios depend mainly on the degree of disequilibrium. The behavior of U and Th in magmatic zircon can be used as a geochemical indicator to determine the origins and crystallization environments of magmatic zircon.