期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass 被引量:3
1
作者 DU Wen-yong ZHANG Lu-da +7 位作者 HU Zhen-fang shamaila Z ZENG Ai-jun sONG Jian-li LIU Ya-jia wolfram s Joachim M HE Xiong-kui 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第6期1476-1480,共5页
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha... The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass. 展开更多
关键词 Thermal infrared image Infrared index ICWSI Technology of irrigation
下载PDF
BP神经网络在使用红外热像仪技术预测冬小麦产量中的应用(英文) 被引量:6
2
作者 胡振方 张录达 +7 位作者 王珏璇 shamaila Z 曾爱君 宋坚利 刘亚佳 wolfram s Joachim M 何雄奎 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第6期1587-1592,共6页
通过使用红外热像仪技术获得冬小麦冠层不同温度值,计算得到冬小麦主要需水阶段水分胁迫指标ICWSI(infrared crop water stress index)。并根据此数据,使用一次灌溉周期中3个时段不同的ICWSI的平均值作为输入因子,相应实测冬小麦产量作... 通过使用红外热像仪技术获得冬小麦冠层不同温度值,计算得到冬小麦主要需水阶段水分胁迫指标ICWSI(infrared crop water stress index)。并根据此数据,使用一次灌溉周期中3个时段不同的ICWSI的平均值作为输入因子,相应实测冬小麦产量作为输出因子,建立了BP神经网络模型对冬小麦的产量进行预测,本文采用三层BP神经网络,其拓扑结构为3-5-1,数据归一化处理后收敛性能增强。预测结果显示,平均相对误差最大只有3.42%;为了证实这一方法的优越性,同时建立了基于ICWSI和冬小麦产量关系的非线性函数的预测模型,预测结果与实际产量值进行比较,平均相对误差最大达到了18.87%。两种预测方法得到的不同预测结果表明,将红外热像仪技术与BP神经网络预测方法相结合,可以成功用来预测冬小麦产量,比使用非线性函数预测的效果更好,精度更高,可靠性更强,可以用于实际生产需要。 展开更多
关键词 红外热像仪 ICWSI BP神经网络 冬小麦产量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部