Wounds, characterized by the disruption of the continuity of body tissues resulting from external trauma,manifest in diverse types and locations. Although numerous wound dressings are available for various woundscenar...Wounds, characterized by the disruption of the continuity of body tissues resulting from external trauma,manifest in diverse types and locations. Although numerous wound dressings are available for various woundscenarios, it remains challenging to find an integrative wound dressing capable of addressing diverse woundsituations. We focused on utilizing sulfated hyaluronan (sHA), known for its anti-inflammatory properties andcapacity to load cationic drugs. By conjugating catechol groups to sHA (sHA-CA), we achieved several advantagesin wound healing: 1) Fabrication of patches through crosslinking with catechol-modified high-molecularweighthyaluronan (HA(HMW)-CA), 2) Adhesiveness that enabled stable localization, 3) Radical scavenging thatcould synergize with the immunomodulation of sHA. The sHA-CA patches demonstrated therapeutic efficacy inthree distinct murine wound models: diabetic wound, hepatic hemorrhage, and post-surgical adhesion. Collectively,these findings underscore the potential of the sHA-CA patch as a promising candidate for the nextgenerationwound dressing.展开更多
基金support from the Ministry of Science and ICT of Korea(NRF-2021R1A2C2008821 and 2022H1D3A2A02093385)the Korean Fund for Regenerative Medicine(KFRM)grant funded by the Korean government(21A0301L1-21)The Institute of Engineering Research at Seoul National University provided research facilities,and additional support came from the SNU Engineering-Medicine Collaboration grant.
文摘Wounds, characterized by the disruption of the continuity of body tissues resulting from external trauma,manifest in diverse types and locations. Although numerous wound dressings are available for various woundscenarios, it remains challenging to find an integrative wound dressing capable of addressing diverse woundsituations. We focused on utilizing sulfated hyaluronan (sHA), known for its anti-inflammatory properties andcapacity to load cationic drugs. By conjugating catechol groups to sHA (sHA-CA), we achieved several advantagesin wound healing: 1) Fabrication of patches through crosslinking with catechol-modified high-molecularweighthyaluronan (HA(HMW)-CA), 2) Adhesiveness that enabled stable localization, 3) Radical scavenging thatcould synergize with the immunomodulation of sHA. The sHA-CA patches demonstrated therapeutic efficacy inthree distinct murine wound models: diabetic wound, hepatic hemorrhage, and post-surgical adhesion. Collectively,these findings underscore the potential of the sHA-CA patch as a promising candidate for the nextgenerationwound dressing.