We evaluated the potential of orally fed new food formulations to inhibit biomarkers reported to be involved in the causes of allergic asthma in mice. Asthma, a serious non-communicable disease, affects both adults an...We evaluated the potential of orally fed new food formulations to inhibit biomarkers reported to be involved in the causes of allergic asthma in mice. Asthma, a serious non-communicable disease, affects both adults and children and can be undertreated. New functional foods could provide therapeutic approaches. Here, the anti-asthma mechanism of a new functional food and three isolated fractions produced by bioprocessing black rice bran with shiitake mushroom mycelia was evaluated in mast cells, B cells, and orally fed mice and compared with non-bioprocessed black rice bran. In vitro, the treatments inhibited RBL-2H3 cell degranulation and immunoglobulin E (IgE) production. The in vitro anti-asthma effects were confirmed in orally fed mice following asthma induction by alumina and chicken egg ovalbumin (OVA). The suppression of asthma resulted from the inhibition of inflammation- and immune-related substances, including OVA-specific IgE, thymic stromal lymphopoietin, eotaxin, leukotriene C4, prostaglandin D2, and vascular cell adhesion molecule-1 in bronchoalveolar lavage fluid and serum. The treatment also reversed the thickening of the lung airway wall. The inflammation and asthma inhibition seems to be regulated by the balance of the T-helper cells’ Th1/Th2 immune response and the inhibition of multiple biomarkers associated with the cause of asthma. Future human clinical studies with adults and children should determine the potential therapeutic value of the anti-asthma effects of the new functional foods.展开更多
This study determined the effect of orally fed polysaccharide-rich bioprocessed (fermented) black rice bran produced by culturing with shiitake (Lentinus edodes) mushroom mycelium on CT-26 colon cancer cells in vivo i...This study determined the effect of orally fed polysaccharide-rich bioprocessed (fermented) black rice bran produced by culturing with shiitake (Lentinus edodes) mushroom mycelium on CT-26 colon cancer cells in vivo in an intracutaneously transplanted mouse tumor alone and in combination with intraperitoneally administered anti-PD-1 immune checkpoint inhibitor. Analysis of the isolated tumor weights at the end of the study shows that the average tumor size in control mice is 3.78 grams, and the average tumor size in mice treated with anti-PD-1 antibody is 2.16 grams. The average tumor size in mice treated with BRB-F alone is 2.25 grams, and the average tumor size in mice treated with anti-PD-1 antibody BRB-F combination is 1.38 grams. Thus, BRB-F or anti-PD-1 antibody alone each reduce tumor size by 40.5% or 42.9%, whereas the combination of BRB-F and anti-PD-1 antibody reduces tumor size by 63.5%, with their cooperative effect being statistically significant. The observed anti-tumor effects were accompanied by a series of biomarkers associated with cancer formation and inhibition. These results indicate that the reported potentiation of cancer therapy using drug-based medical chemotherapies with added checkpoint inhibitors in human patients are mechanistically similar with the functional food evaluated in the present study. These beneficial effects in mice challenge clinicians to investigate if the black rice bran food product can also protect against human cancer.展开更多
文摘We evaluated the potential of orally fed new food formulations to inhibit biomarkers reported to be involved in the causes of allergic asthma in mice. Asthma, a serious non-communicable disease, affects both adults and children and can be undertreated. New functional foods could provide therapeutic approaches. Here, the anti-asthma mechanism of a new functional food and three isolated fractions produced by bioprocessing black rice bran with shiitake mushroom mycelia was evaluated in mast cells, B cells, and orally fed mice and compared with non-bioprocessed black rice bran. In vitro, the treatments inhibited RBL-2H3 cell degranulation and immunoglobulin E (IgE) production. The in vitro anti-asthma effects were confirmed in orally fed mice following asthma induction by alumina and chicken egg ovalbumin (OVA). The suppression of asthma resulted from the inhibition of inflammation- and immune-related substances, including OVA-specific IgE, thymic stromal lymphopoietin, eotaxin, leukotriene C4, prostaglandin D2, and vascular cell adhesion molecule-1 in bronchoalveolar lavage fluid and serum. The treatment also reversed the thickening of the lung airway wall. The inflammation and asthma inhibition seems to be regulated by the balance of the T-helper cells’ Th1/Th2 immune response and the inhibition of multiple biomarkers associated with the cause of asthma. Future human clinical studies with adults and children should determine the potential therapeutic value of the anti-asthma effects of the new functional foods.
文摘This study determined the effect of orally fed polysaccharide-rich bioprocessed (fermented) black rice bran produced by culturing with shiitake (Lentinus edodes) mushroom mycelium on CT-26 colon cancer cells in vivo in an intracutaneously transplanted mouse tumor alone and in combination with intraperitoneally administered anti-PD-1 immune checkpoint inhibitor. Analysis of the isolated tumor weights at the end of the study shows that the average tumor size in control mice is 3.78 grams, and the average tumor size in mice treated with anti-PD-1 antibody is 2.16 grams. The average tumor size in mice treated with BRB-F alone is 2.25 grams, and the average tumor size in mice treated with anti-PD-1 antibody BRB-F combination is 1.38 grams. Thus, BRB-F or anti-PD-1 antibody alone each reduce tumor size by 40.5% or 42.9%, whereas the combination of BRB-F and anti-PD-1 antibody reduces tumor size by 63.5%, with their cooperative effect being statistically significant. The observed anti-tumor effects were accompanied by a series of biomarkers associated with cancer formation and inhibition. These results indicate that the reported potentiation of cancer therapy using drug-based medical chemotherapies with added checkpoint inhibitors in human patients are mechanistically similar with the functional food evaluated in the present study. These beneficial effects in mice challenge clinicians to investigate if the black rice bran food product can also protect against human cancer.