In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migr...In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.展开更多
When seismic exploration is conducted in a special geological environment such as a tunnel space,the traditional imaging method in the Cartesian coordinate system cannot accurately discretize the air column in that en...When seismic exploration is conducted in a special geological environment such as a tunnel space,the traditional imaging method in the Cartesian coordinate system cannot accurately discretize the air column in that environment.Thus,obtaining Thus,obtaining highquality imaging results is diffi cult.Therefore,an elastic-wave reverse-time migration method based on the polar coordinate system is proposed.In this method,three boundary conditions exist:outer,inner,and corner boundaries.In the outer boundary,the polar-coordinated absorbing boundary in the radial direction is used to suppress the artifi cial-boundary refl ection.The free-surface boundary condition is adopted in the tunnel space at the inner boundary.In the angular boundaries,we use two diff erent boundary conditions for two cases.The air column in the tunnel space is usually not an irregular circle.Therefore,the irregular tunnelspace geological body in the polar coordinate system is meshed into curvilinear grids and transformed into a regular one in an auxiliary polar coordinate system using the mapping method.Finally,elastic reverse-time migration technology is applied into the auxiliary polar coordinate system.In the numerical examples,two typical models are used to test the proposed method,which verify that the proposed method can obtain accurate images from the datasets in the tunnel space.展开更多
基金supported by National Natural Science Foundation of China(Nos.41904101,41774133)Natural Science Foundation of Shandong Province(ZR2019QD004)+1 种基金Fundamental Research Funds for the Central Universities(No.19CX02010A)the Open Funds of SINOPEC Key Laboratory of Geophysics(Nos.wtyjy-wx2019-01-03,wtyjywx2018-01-06)
文摘In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.
基金financially supported by the National Natural Science Foundation of China (grant Nos. 41904101 and 41774133)Natural Science Foundation of Shandong Province (grant No. ZR2019QD004)+1 种基金Fundamental Research Funds for the Central Universities (grant No. 19CX02010A)the Open Funds of SINOPEC Key Laboratory of Geophysics (grant No. wtyjy-wx2019-01-03)。
文摘When seismic exploration is conducted in a special geological environment such as a tunnel space,the traditional imaging method in the Cartesian coordinate system cannot accurately discretize the air column in that environment.Thus,obtaining Thus,obtaining highquality imaging results is diffi cult.Therefore,an elastic-wave reverse-time migration method based on the polar coordinate system is proposed.In this method,three boundary conditions exist:outer,inner,and corner boundaries.In the outer boundary,the polar-coordinated absorbing boundary in the radial direction is used to suppress the artifi cial-boundary refl ection.The free-surface boundary condition is adopted in the tunnel space at the inner boundary.In the angular boundaries,we use two diff erent boundary conditions for two cases.The air column in the tunnel space is usually not an irregular circle.Therefore,the irregular tunnelspace geological body in the polar coordinate system is meshed into curvilinear grids and transformed into a regular one in an auxiliary polar coordinate system using the mapping method.Finally,elastic reverse-time migration technology is applied into the auxiliary polar coordinate system.In the numerical examples,two typical models are used to test the proposed method,which verify that the proposed method can obtain accurate images from the datasets in the tunnel space.