The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical ...The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical microscopy and transmissionelectron microscopy. The results reveal that Mg has a strong influence on the distribution and volume fraction of dispersoids duringprecipitation heat treatment. The microhardness and yield strength at ambient temperature increase with increasing Mg content. Thesolid solution and dispersoid strengthening mechanisms of materials after heat treatment are quantitatively analyzed. Dispersoidstrengthening for the alloys is the predominant strengthening mechanism after precipitation heat treatment. An analytical model isintroduced to predict the evolution of ambient-temperature yield strength.展开更多
基金the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC)Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at University of Quebec at Chicoutimi
文摘The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical microscopy and transmissionelectron microscopy. The results reveal that Mg has a strong influence on the distribution and volume fraction of dispersoids duringprecipitation heat treatment. The microhardness and yield strength at ambient temperature increase with increasing Mg content. Thesolid solution and dispersoid strengthening mechanisms of materials after heat treatment are quantitatively analyzed. Dispersoidstrengthening for the alloys is the predominant strengthening mechanism after precipitation heat treatment. An analytical model isintroduced to predict the evolution of ambient-temperature yield strength.