Using the SG-III prototype laser at China Academy of Engineering Physics,Mianyang,we irradiated polystyrene(CH)samples with a thermal radiation drive,reaching conditions on the principal Hugoniot up to P≈1 TPa(10 Mba...Using the SG-III prototype laser at China Academy of Engineering Physics,Mianyang,we irradiated polystyrene(CH)samples with a thermal radiation drive,reaching conditions on the principal Hugoniot up to P≈1 TPa(10 Mbar),and away from the Hugoniot up to P≈300 GPa(3 Mbar).The response of each sample was measured with a velocity interferometry diagnostic to determine the material and shock velocity,and hence the conditions reached,and the reflectivity of the sample,from which changes in the conductivity can be inferred.By applying the selfimpedance mismatch technique with the measured velocities,the pressure and density of thermodynamic points away from the principal Hugoniot were determined.Our results show an unexpectedly large reflectivity at the highest shock pressures,while the off-Hugoniot points agree with previous work suggesting that shock-compressed CH conductivity is primarily temperature-dependent.展开更多
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial sol...Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.展开更多
基金The authors would like to thank the technical teams at LFRC for their invaluable work producing the targets and operating the facility.N.J.H.and D.K.were supported by the Helmholtz Association under Grant No.VH-NG-1141.Y.L.was supported by the National Natural Science Foundation of China(Grant No.11605189).
文摘Using the SG-III prototype laser at China Academy of Engineering Physics,Mianyang,we irradiated polystyrene(CH)samples with a thermal radiation drive,reaching conditions on the principal Hugoniot up to P≈1 TPa(10 Mbar),and away from the Hugoniot up to P≈300 GPa(3 Mbar).The response of each sample was measured with a velocity interferometry diagnostic to determine the material and shock velocity,and hence the conditions reached,and the reflectivity of the sample,from which changes in the conductivity can be inferred.By applying the selfimpedance mismatch technique with the measured velocities,the pressure and density of thermodynamic points away from the principal Hugoniot were determined.Our results show an unexpectedly large reflectivity at the highest shock pressures,while the off-Hugoniot points agree with previous work suggesting that shock-compressed CH conductivity is primarily temperature-dependent.
文摘Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.