The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Line...The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Lines(RAIL) of the arbitrary section in the benchmark is presented as the nonlinear relation between the moving load and the RAIL appeared, when the moving load is located on the damage area. The damage detection method is derived based on the Difference of the RAIL Curvature(DRAIL-C) prior to and following arbitrarily section damage in a simply supported beam with bending fuzzy stiffness consideration. The results demonstrate that the damage position can be located by the DRAIL-C graph and the damage extent can be calculated by the DRAIL-C curve peak. The simply supported box girder as a one-dimensional model and the simply supported truss bridge as a three-dimensional model with the bending fuzzy stiffness are simulated for the validity of the proposed method to be verified. The measuring point position and noise intensity effects are discussed in the simply supported box girder example. This paper provides a new consideration and technique for the damage detection of a simply supported bridge with bending fuzzy stiffness consideration.展开更多
基金the National Natural Science Foundation of China(Nos.51608245 and 51568041)the Natural Science Foundation of Gansu Province(No.148RJZA026)
文摘The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Lines(RAIL) of the arbitrary section in the benchmark is presented as the nonlinear relation between the moving load and the RAIL appeared, when the moving load is located on the damage area. The damage detection method is derived based on the Difference of the RAIL Curvature(DRAIL-C) prior to and following arbitrarily section damage in a simply supported beam with bending fuzzy stiffness consideration. The results demonstrate that the damage position can be located by the DRAIL-C graph and the damage extent can be calculated by the DRAIL-C curve peak. The simply supported box girder as a one-dimensional model and the simply supported truss bridge as a three-dimensional model with the bending fuzzy stiffness are simulated for the validity of the proposed method to be verified. The measuring point position and noise intensity effects are discussed in the simply supported box girder example. This paper provides a new consideration and technique for the damage detection of a simply supported bridge with bending fuzzy stiffness consideration.