Based on the analysis of newly collected data of plate tectonics, distribution of active faults and crustal deformation, the Taiwan Region is divided into two seismic regions and six seismic belts. Then, correlation f...Based on the analysis of newly collected data of plate tectonics, distribution of active faults and crustal deformation, the Taiwan Region is divided into two seismic regions and six seismic belts. Then, correlation fractal dimensions of all the regions and belts are calculated, and the fractal characteristics of hypocenteral distribution can be quantitatively analyzed. Finally, multifractal dimensions D q and f(α) are calculated by using the earthquake catalog of the past 11 years in the Taiwan Region. This study indicates that (1) there exists a favorable corresponding relationship between spatial images of seismic activity described with correlation fractal dimension analysis and tectonic settings; (2) the temporal structure of earthquakes is not single but multifractal fractal, and the pattern of D q variation with time is a good indicator for predicting strong earthquake events.展开更多
2-D and 3-D densities of fractures are commonly used in mining safety design, natural gas and oil production in fractured reservoirs, and the characterization of subsurface flow and transportation systems in fractured...2-D and 3-D densities of fractures are commonly used in mining safety design, natural gas and oil production in fractured reservoirs, and the characterization of subsurface flow and transportation systems in fractured rocks. However, many field data sets are collected in 1-D frequency (f) (e.g., scanlines and borehole data). We have developed an ARC/ INFO-based technology to calculate fracture frequency and densities for a given fracture network. A series of numerical simulations are performed in order to determine the optimal orientation of a scanline, along which the maximum fracture frequency of a fracture network can be obtained. We calculated the frequency (f) and densities (both D1 and D2) of 36 natural fracture trace maps, and investigated the statistical relationship between fracture frequency and fracture density D1, i.e. D1=1.340f+ 0.034. We derived analytical solutions for converting dimensional density (D1) to non-dimensional densities (D2 and D3) assuming that fracture length distribution follows an exponential or power law. A comparison between observed and calculated results based on the equations we developed shows that (1) there exists a linear relationship between fracture frequency and fracture density (D1), and this relationship can be used to estimate fracture density (D1) if the fracture frequency is determined from a scanline survey or from borehole data; (2) the analytical solutions we derived can accurately determine the non-dimensional 2-D fracture density (D2) in practice and 3-D fracture density (D3) in theory if the fracture length distribution function is assumed.展开更多
基金the Joint Earthquake Science Foundation grant number 100070 the NationalNatural Science Foundation of Chinagrant number40272111.
文摘Based on the analysis of newly collected data of plate tectonics, distribution of active faults and crustal deformation, the Taiwan Region is divided into two seismic regions and six seismic belts. Then, correlation fractal dimensions of all the regions and belts are calculated, and the fractal characteristics of hypocenteral distribution can be quantitatively analyzed. Finally, multifractal dimensions D q and f(α) are calculated by using the earthquake catalog of the past 11 years in the Taiwan Region. This study indicates that (1) there exists a favorable corresponding relationship between spatial images of seismic activity described with correlation fractal dimension analysis and tectonic settings; (2) the temporal structure of earthquakes is not single but multifractal fractal, and the pattern of D q variation with time is a good indicator for predicting strong earthquake events.
基金supported by the National Natural Science Foundation of China grant No.40272111the Rock Fracture Project at the State University of New York at Bufalo
文摘2-D and 3-D densities of fractures are commonly used in mining safety design, natural gas and oil production in fractured reservoirs, and the characterization of subsurface flow and transportation systems in fractured rocks. However, many field data sets are collected in 1-D frequency (f) (e.g., scanlines and borehole data). We have developed an ARC/ INFO-based technology to calculate fracture frequency and densities for a given fracture network. A series of numerical simulations are performed in order to determine the optimal orientation of a scanline, along which the maximum fracture frequency of a fracture network can be obtained. We calculated the frequency (f) and densities (both D1 and D2) of 36 natural fracture trace maps, and investigated the statistical relationship between fracture frequency and fracture density D1, i.e. D1=1.340f+ 0.034. We derived analytical solutions for converting dimensional density (D1) to non-dimensional densities (D2 and D3) assuming that fracture length distribution follows an exponential or power law. A comparison between observed and calculated results based on the equations we developed shows that (1) there exists a linear relationship between fracture frequency and fracture density (D1), and this relationship can be used to estimate fracture density (D1) if the fracture frequency is determined from a scanline survey or from borehole data; (2) the analytical solutions we derived can accurately determine the non-dimensional 2-D fracture density (D2) in practice and 3-D fracture density (D3) in theory if the fracture length distribution function is assumed.