利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h P...利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h Pa温差中位数超过25°C,对流层中层存在干层;春季动力条件较好,0~6km垂直风切变中位数达到18.4 m·s^(-1),是夏季的2倍;夏季能量条件较好,CAPE平均值可达2 491.0 J·kg^(-1),而春季仅为977.5 J·kg^(-1)。(2)凝练和定量验证了基于双偏振特征量的雷暴大风风暴演变的概念模型:对流风暴的生命史分为3个阶段,初生阶段存在较强的Z_(DR)柱,Z和K_(DP)较弱且未及地;发展阶段K_(DP)柱显著增强,Z_(DR)柱稍有减弱;雷暴大风发生阶段Z、Z_(DR)和K_(DP)核心高度均明显降低。因此,较强的Z_(DR)柱,并伴随显著增强的K_(DP)柱是雷暴大风发生的前兆信号。(3)统计获得双偏振特征量预警指标:初生阶段和发展阶段多数分别发生在雷暴大风发生前60 min和前20 min;在0~2 km的高度上,3~4 d B的Z_(DR)大值区提前10~15 min到达雷暴大风站点。展开更多
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protec...Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway.The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion.Nicotiflorin(10 mg/kg) was administered by tail vein injection.Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase d UTP nick end labeling assay.Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining.Additionally,p-JAK2,p-STAT3,Bcl-2,Bax,and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay.Nicotiflorin altered the shape and structure of injured neurons,decreased the number of apoptotic cells,down-regulates expression of p-JAK2,p-STAT3,caspase-3,and Bax,decreased Bax immunoredactivity,and increased Bcl-2 protein expression and immunoreactivity.These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.展开更多
Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosi...Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosion treated samples were then subjected to high-temperature experiments at 25,300,600,and 900℃,and triaxial compression experiments were conducted in the laboratory.The experimental results show that the superposition of chemical damage and thermal damage has a significant impact on the quality,wave velocity,porosity and compression failure characteristics of the rock.Based on the Lemaitre strain equivalent hypothesis theory,the damage degree of rock material was described by introducing damage variables,and the spatial mobilized plane(SMP)criterion was adopted.The damage constitutive model can well reflect the stress-strain characteristics of the rock triaxial compression process,which verified the rationality and reliability of the model parameters.The experiment and constitutive model analyzed the change law of mechanical properties of rock after chemical corrosion and high temperature thermal damage,which had certain practical significance for rock engineering construction.展开更多
Tetralin-1-carboxamides are frequently incorporated in myriad medicinally important molecules.However,their existing synthetic routes not only suffer from some drawbacks such as tedious procedures,harsh reaction condi...Tetralin-1-carboxamides are frequently incorporated in myriad medicinally important molecules.However,their existing synthetic routes not only suffer from some drawbacks such as tedious procedures,harsh reaction conditions,narrow substrate scope,low yields,and environmental problems,but are also based upon the elaboration of uneasily available non-linear tetralin derivatives.Herein,we describe a metal-and additive-free visible light-induced[4+2]annulation of two simple linear starting materials,namely acrylamides and 2-benzyl-2-bromocarbonyls,through a cascade C(sp^(3))-Br/C(sp^(2))-H bond cleavage,double C-C bond formation,and aromatization sequence.The developed protocol provides a convenient,efficient,and green approach to a variety of tetralin-1-carboxamide derivatives with good functional group compatibility.Importantly,the resulting products could also undergo the Licl-mediated mono-decarboxylative cyclization process to further furnish the architecturally novel bridged polycyclic imides with excellentcis-diastereoselectivities.展开更多
Main observation and conclusion Alkoxy radical-mediated carbon-carbon bond cleavages have emerged as a powerful strategy to complement traditional ionic-type transformations.However,carbon-carbon cleavage reaction tri...Main observation and conclusion Alkoxy radical-mediated carbon-carbon bond cleavages have emerged as a powerful strategy to complement traditional ionic-type transformations.However,carbon-carbon cleavage reaction triggered by alkoxy radical intermediate derived from the combination of alkyl radical and dioxygen,is scarce and underdeveloped.Herein,we report alkoxy radical,which was generated from alkyl radical and dioxygen,mediated selective cleavage of unstrained carbon-carbon bond for the oxysulfonylation of 1,1-disubstituted alkenes,providing facile access to a variety of valuableβ-keto sulfones.Mechanistic experiments indicated alkoxy radical intermediate that underwent subsequent regioselectiveβ-scission might be involved in the reaction and preliminary computational studies were conducted to provide a detailed explanation on the regioselectivity of the C-C bond cleavage.Notably,the strategy was successfully applied for constructing uneasily obtained architecturally intriguing molecules.展开更多
Due to unique electrical properties and high catalytic efficiency,transition metal nitrogen-codoped car-bide(TM-N-C)has attracted tremendous interest as a multifunctional electrocatalyst for water splitting.Unlike tra...Due to unique electrical properties and high catalytic efficiency,transition metal nitrogen-codoped car-bide(TM-N-C)has attracted tremendous interest as a multifunctional electrocatalyst for water splitting.Unlike traditional single-source modification,herein a novel pomegranate-like high-entropy(HE)elec-trocatalyst of Ni_(3)ZnC_(0.7)decorated with homogeneous multimetal(Fe,Co,Cu,and Ni)nitrogen-codoped carbon matrix(Ni_(3)ZnC_(0.7)@CoNiCuFe-NC)is reported.It can be implemented by the simple thermal an-nealing method of multimetal codoped zeolitic imidazolate framework(ZIF).Benefiting from the syn-ergistic effects of plentiful TM-N-C species,template effect of ZIF and distinct nanoporous structure,HE electrocatalyst Ni_(3)ZnC_(0.7)@CoNiCuFe-NC exhibits outstanding electrocatalytic performance.When ap-plied in strong alkaline electrolyte(1.0 M KOH),the overpotentials of Ni_(3)ZnC_(0.7)@CoNiCuFe-NC present as low as 202 and 97 mV for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)at 10 mA cm^(−2)current density.Surprisingly as a bifunctional electrode,it can achieve the low cell voltage of 1.53 V at 10 mA cm^(−2)current density for overall water splitting,which is comparable to conventional IrO_(2)||Pt/C electrode and superior to the recently reported analogous bifunctional catalysts.Thus,the work proposes the direction for the rational design of homogeneous distribution of TM-N-C material for water splitting in the green hydrogen energy industry.展开更多
To address the inadequacies of traditional pipe-roof methods,the steel support cutting pipe method(SSCP)—a novel pipe-roof method that improves construction security and underground space usage—is proposed.To furthe...To address the inadequacies of traditional pipe-roof methods,the steel support cutting pipe method(SSCP)—a novel pipe-roof method that improves construction security and underground space usage—is proposed.To further explore the applications of SSCP,its design scheme ought to be optimized.The failure mode and mechanical behaviors of the SSCP were investigated through laboratory experiments.Subsequently,a series of finite element models(FEMs)was established to study the deformation characteristics.Further,the parameters of the steel support of the proposed structure were optimized using fuzzy mathematics.The results indicated the ultimate bearing capacity to be 366.8 kN,and the specimen began to yield when the external load reached 70%of the ultimate value.The lon-gitudinal spacing of the steel supports,transverse steel support size,and vertical steel support size had significant effect on the vertical deformation of the steel support and the ground settlement.Finally,the optimal combination of steel supports for the SSCP structure was obtained.展开更多
文摘利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h Pa温差中位数超过25°C,对流层中层存在干层;春季动力条件较好,0~6km垂直风切变中位数达到18.4 m·s^(-1),是夏季的2倍;夏季能量条件较好,CAPE平均值可达2 491.0 J·kg^(-1),而春季仅为977.5 J·kg^(-1)。(2)凝练和定量验证了基于双偏振特征量的雷暴大风风暴演变的概念模型:对流风暴的生命史分为3个阶段,初生阶段存在较强的Z_(DR)柱,Z和K_(DP)较弱且未及地;发展阶段K_(DP)柱显著增强,Z_(DR)柱稍有减弱;雷暴大风发生阶段Z、Z_(DR)和K_(DP)核心高度均明显降低。因此,较强的Z_(DR)柱,并伴随显著增强的K_(DP)柱是雷暴大风发生的前兆信号。(3)统计获得双偏振特征量预警指标:初生阶段和发展阶段多数分别发生在雷暴大风发生前60 min和前20 min;在0~2 km的高度上,3~4 d B的Z_(DR)大值区提前10~15 min到达雷暴大风站点。
基金financially supported by the Natural Science Foundation of Education Department of Sichuan Province of China,No.14ZB0152the Joint Research Program of Luzhou and Southwest Medical University,in China,No.14JC0120
文摘Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway.The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion.Nicotiflorin(10 mg/kg) was administered by tail vein injection.Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase d UTP nick end labeling assay.Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining.Additionally,p-JAK2,p-STAT3,Bcl-2,Bax,and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay.Nicotiflorin altered the shape and structure of injured neurons,decreased the number of apoptotic cells,down-regulates expression of p-JAK2,p-STAT3,caspase-3,and Bax,decreased Bax immunoredactivity,and increased Bcl-2 protein expression and immunoreactivity.These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.
文摘Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosion treated samples were then subjected to high-temperature experiments at 25,300,600,and 900℃,and triaxial compression experiments were conducted in the laboratory.The experimental results show that the superposition of chemical damage and thermal damage has a significant impact on the quality,wave velocity,porosity and compression failure characteristics of the rock.Based on the Lemaitre strain equivalent hypothesis theory,the damage degree of rock material was described by introducing damage variables,and the spatial mobilized plane(SMP)criterion was adopted.The damage constitutive model can well reflect the stress-strain characteristics of the rock triaxial compression process,which verified the rationality and reliability of the model parameters.The experiment and constitutive model analyzed the change law of mechanical properties of rock after chemical corrosion and high temperature thermal damage,which had certain practical significance for rock engineering construction.
基金supported by the National Natural Science Foundation of China(Nos.22101237,22171233)the Science and Technology Program of Sichuan Province(Nos.2022YFS0608,2022NSFSC1219)+1 种基金the Open Project Program of Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province(Nos.HYX21003,HYX22008)the research fund of Southwest Medical University(2021ZKMS042).
文摘Tetralin-1-carboxamides are frequently incorporated in myriad medicinally important molecules.However,their existing synthetic routes not only suffer from some drawbacks such as tedious procedures,harsh reaction conditions,narrow substrate scope,low yields,and environmental problems,but are also based upon the elaboration of uneasily available non-linear tetralin derivatives.Herein,we describe a metal-and additive-free visible light-induced[4+2]annulation of two simple linear starting materials,namely acrylamides and 2-benzyl-2-bromocarbonyls,through a cascade C(sp^(3))-Br/C(sp^(2))-H bond cleavage,double C-C bond formation,and aromatization sequence.The developed protocol provides a convenient,efficient,and green approach to a variety of tetralin-1-carboxamide derivatives with good functional group compatibility.Importantly,the resulting products could also undergo the Licl-mediated mono-decarboxylative cyclization process to further furnish the architecturally novel bridged polycyclic imides with excellentcis-diastereoselectivities.
基金Fund of Luzhou Government and Southwest Medical University(Nos.2019LZXNYDJ28,2018LZXNYD-ZK33,2018LZXNYD-ZK39)the Open Project of Central Nervous System Drug Key Laboratory of Sichuan Province(No.200023-01SZ)the research fund of Southwest Medical University(Nos.2017-ZRZD-020 and 2017-ZRQN-031).
文摘Main observation and conclusion Alkoxy radical-mediated carbon-carbon bond cleavages have emerged as a powerful strategy to complement traditional ionic-type transformations.However,carbon-carbon cleavage reaction triggered by alkoxy radical intermediate derived from the combination of alkyl radical and dioxygen,is scarce and underdeveloped.Herein,we report alkoxy radical,which was generated from alkyl radical and dioxygen,mediated selective cleavage of unstrained carbon-carbon bond for the oxysulfonylation of 1,1-disubstituted alkenes,providing facile access to a variety of valuableβ-keto sulfones.Mechanistic experiments indicated alkoxy radical intermediate that underwent subsequent regioselectiveβ-scission might be involved in the reaction and preliminary computational studies were conducted to provide a detailed explanation on the regioselectivity of the C-C bond cleavage.Notably,the strategy was successfully applied for constructing uneasily obtained architecturally intriguing molecules.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22008180 and 21878231)the Natural Science Foundation of Tianjin(Nos.19JCQNJC05700 and 19JCZDJC37300)the Tianjin College Student Innovation and Entrepreneurship Training Program(No.202010058034).This work was also supported by the Analytical&Testing Center of Tiangong University for structural characterization tests.
文摘Due to unique electrical properties and high catalytic efficiency,transition metal nitrogen-codoped car-bide(TM-N-C)has attracted tremendous interest as a multifunctional electrocatalyst for water splitting.Unlike traditional single-source modification,herein a novel pomegranate-like high-entropy(HE)elec-trocatalyst of Ni_(3)ZnC_(0.7)decorated with homogeneous multimetal(Fe,Co,Cu,and Ni)nitrogen-codoped carbon matrix(Ni_(3)ZnC_(0.7)@CoNiCuFe-NC)is reported.It can be implemented by the simple thermal an-nealing method of multimetal codoped zeolitic imidazolate framework(ZIF).Benefiting from the syn-ergistic effects of plentiful TM-N-C species,template effect of ZIF and distinct nanoporous structure,HE electrocatalyst Ni_(3)ZnC_(0.7)@CoNiCuFe-NC exhibits outstanding electrocatalytic performance.When ap-plied in strong alkaline electrolyte(1.0 M KOH),the overpotentials of Ni_(3)ZnC_(0.7)@CoNiCuFe-NC present as low as 202 and 97 mV for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)at 10 mA cm^(−2)current density.Surprisingly as a bifunctional electrode,it can achieve the low cell voltage of 1.53 V at 10 mA cm^(−2)current density for overall water splitting,which is comparable to conventional IrO_(2)||Pt/C electrode and superior to the recently reported analogous bifunctional catalysts.Thus,the work proposes the direction for the rational design of homogeneous distribution of TM-N-C material for water splitting in the green hydrogen energy industry.
基金financial support for the research,authorship,and/or publication of this article:The research described in this paper was supported by The National Natural Science Foundation of China(Grant Nos.51878127,51578116).
文摘To address the inadequacies of traditional pipe-roof methods,the steel support cutting pipe method(SSCP)—a novel pipe-roof method that improves construction security and underground space usage—is proposed.To further explore the applications of SSCP,its design scheme ought to be optimized.The failure mode and mechanical behaviors of the SSCP were investigated through laboratory experiments.Subsequently,a series of finite element models(FEMs)was established to study the deformation characteristics.Further,the parameters of the steel support of the proposed structure were optimized using fuzzy mathematics.The results indicated the ultimate bearing capacity to be 366.8 kN,and the specimen began to yield when the external load reached 70%of the ultimate value.The lon-gitudinal spacing of the steel supports,transverse steel support size,and vertical steel support size had significant effect on the vertical deformation of the steel support and the ground settlement.Finally,the optimal combination of steel supports for the SSCP structure was obtained.