期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mechanically flexible V_(3)S_(4)@carbon composite fiber as a high-capacity and fast-charging anode for sodium-ion capacitors 被引量:3
1
作者 Zhi-Fei Mao Xiao-Jun Shi +8 位作者 Tao-Qiu Zhang Peng-Ju Liang Rui Wang Jun Jin Bei-Bei He Yan-Sheng Gong Qiang Wang xi-li tong Huan-Wen Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2633-2642,共10页
Hybrid Na-ion capacitors(NICs)have received considerable interests owing to their low-cost,high-safety,and rapidly charging energy-storage characteristics.The NICs are composed of a capacitor-type cathode and a batter... Hybrid Na-ion capacitors(NICs)have received considerable interests owing to their low-cost,high-safety,and rapidly charging energy-storage characteristics.The NICs are composed of a capacitor-type cathode and a battery-type anode.The major challenge for NICs is to search for suitable electrode materials to overcome the sluggish diffusion of Na^(+)in the anode.Herein,ultrafine vanadium sulfide is encapsulated in carbon fiber(V_(3)S_(4)@CNF)as a self-supported electrode by electrospinning and in situ sulfurization.The carbon cladding and one-dimensional(ID)nanofiber network-like structure could alleviate the volume expansion of V_(3)S_(4)during Na^(+)de-/intercalation process.Consequently,the V_(3)S_(4)@CNF anode exhibited a pseudocapacitive sodium storage in terms of large Na^(+)-storage capacity(476 mAh·g^(-1)at 0.1A·g^(-1)),high-rate capability(290 mAh·g^(-1)at 20.0 A·g^(-1))and excellent cycling stability(95%capacity retention for1500 cycles at 2.0 A·g^(-1))in Na half-cells.By employing V_(3)S_(4)@CNF as the anode and the activated carbon(AC)cathode,the as-assembled NICs could deliver a high energy density of 110 Wh·kg^(-1)at a power density of200 W·kg^(-1).Even at a high power of 10,000 W·kg^(-1),the specific energy is still up to 42 Wh·kg^(-1). 展开更多
关键词 Electrospinning Na-ion capacitor(NIC) NANOFIBERS Vanadium sulfide Fast-charging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部