Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified k-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified k-ω model and Schnerr-Sa...Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified k-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified k-ω model and Schnerr-Sauer cavitation model were combined with ANSYS CFX. To evaluate the modified and standard k-co models, numerical simulations were performed with these two models, respectively, and the calculation results were compared with the experimental data. Numerical simulations were executed with three different values of the flow coefficient, and the simulation results of the modified k-ω model showed agreement with most of the experimental data. The cavitating flow in the centrifugal pump obtained by the modified k-ω model at the design flow coefficient of 0.102, was analyzed. When the cavitation number decreases, the cavity initially generates on the suction side of the blade near the leading edge and then expands to the outlet of the impeller, and the decrease of the total pressure coefficient mainly occurs upstream of the impeller passage, while the downstream remains almost unaffected by the development of cavitation.展开更多
基金supported by the National Natural Science Foundation of China (Grants No. 51179075 and 51239005) A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified k-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified k-ω model and Schnerr-Sauer cavitation model were combined with ANSYS CFX. To evaluate the modified and standard k-co models, numerical simulations were performed with these two models, respectively, and the calculation results were compared with the experimental data. Numerical simulations were executed with three different values of the flow coefficient, and the simulation results of the modified k-ω model showed agreement with most of the experimental data. The cavitating flow in the centrifugal pump obtained by the modified k-ω model at the design flow coefficient of 0.102, was analyzed. When the cavitation number decreases, the cavity initially generates on the suction side of the blade near the leading edge and then expands to the outlet of the impeller, and the decrease of the total pressure coefficient mainly occurs upstream of the impeller passage, while the downstream remains almost unaffected by the development of cavitation.