In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of...In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of motion is very meaningful to realize trajectory prediction and adaptive motion control of the USV. An interactive identification algorithm (ESO–MILS, extended state observer–multi-innovation least squares) based on ESO is proposed. The robustness of online identification is improved by expanding the state observer to estimate the current disturbance without making artificial assumptions. Specifically, the three-degree-of-freedom dynamic equation of the double propeller propulsion USV is constructed. A linear model for online identification is derived by parameterization. Based on the least square criterion function, it is proved that the interactive identification method with disturbance estimation can improve the identification accuracy from the perspective of mathematical expectation. The extended state observer is designed to estimate the unknown disturbance in the model. The online interactive update improves the disturbance immunity of the identification algorithm. Finally, the effectiveness of the interactive identification algorithm is verified by simulation experiment and real ship experiment.展开更多
Residual films on the sowing layer produced after mulching in Xinjiang farmland,harm the sowing quality and root growth of crops.In this study,a sowing layer residual film recovery machine based on a radial plate arc-...Residual films on the sowing layer produced after mulching in Xinjiang farmland,harm the sowing quality and root growth of crops.In this study,a sowing layer residual film recovery machine based on a radial plate arc-shaped nail-tooth roller structure was designed.Meanwhile,the key device structures were designed and the main working parameters were analyzed.Then,taking the working depth,the forward speed of the machine and the rotation speed of the nail tooth roller as the test factors,and the film collection rate and film intertwining rate as the test indicators,the single factor tests and the Box-Behnken response surface tests were carried out to evaluate the performance of the sowing layer residual film recovery machine.Consequently,the results showed that the order of significant factors was the working depth,the forward speed of the machine,and the rotation speed of the nail tooth roller.Besides,the optimal working parameters were determined,which the working depth,the forward speed of the machine,and the rotation speed of the nail tooth roller were 100 mm,4.8 km/h,and 49.3 r/min,respectively.Moreover,the predicted value of the film collection rate was 69.20%.Finally,the verification test was taken with the optimal working parameter,and the results showed that the film collection rate was 66.84%,and the film intertwining rate was 1.39%.The relative error between the test value and the predicted value of the film collection rate was 3.40%.It indicated that the machine can perform the collection of sowing layer residual films.This study can provide a theoretical basis and reference for the design of new sowing layer residual film machines.展开更多
This study was conducted to discuss the effect of rolling strain on microstructure and tensile properties of dual-phase Mg-8Li-3Al-2Zn-0.5 Y(wt%) alloy, which was prepared by casting, and then homogenized and rolled...This study was conducted to discuss the effect of rolling strain on microstructure and tensile properties of dual-phase Mg-8Li-3Al-2Zn-0.5 Y(wt%) alloy, which was prepared by casting, and then homogenized and rolled at 200℃. The rolling process was conducted with 10% reduction per pass and five different accumulated strains, varying from 10% to 70%. The results indicate that the as-cast and as-rolled Mg-8Li-3Al-2Zn-0.5Y alloys are composed of α-Mg, β-Li, AlLi and Al;Y phases. After rolling process,anisotropic microstructure was observed. a-Mg phase got elongated in both rolling direction and transverse direction with the addition of rolling strain. Consequently, the strength of the alloy in both directions was notably improved whereas the elongation declined, mainly caused by strain hardening and dispersion strengthening. The tensile properties of the as-rolled alloys in the RD, no matter the YS, UTS or the elongation, are higher than those of the TD due to their larger deformation strain and significant anisotropy in the hcp α-Mg phase. In addition, the fracture and strengthening mechanism of the tested alloys were also investigated systematically.展开更多
Surface films that formed on molten AZ91D magnesium alloy in S02/air cover gases at 680 ℃ in a sealed furnace were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and ...Surface films that formed on molten AZ91D magnesium alloy in S02/air cover gases at 680 ℃ in a sealed furnace were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Auger electron spectroscopy. It is revealed that the film formed on molten AZ91D alloy surface in cover gas with high air content can prevent the molten AZ91D alloy from oxidation and ignition. The surface film contained three elements, namely magnesium, oxygen and sulfur, and was mainly composed of MgO and MgS. The properties of the film depended on air content in the cover gas and holding time. Thermodynamic calculation showed that MgSO4 was the stable phase, and it was concluded that the formation of MgS04 was important for the formation of the protective surface film in S02/air atmospheres.展开更多
基金supported by the National Natural Science Foundation of China(No.52271367).
文摘In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of motion is very meaningful to realize trajectory prediction and adaptive motion control of the USV. An interactive identification algorithm (ESO–MILS, extended state observer–multi-innovation least squares) based on ESO is proposed. The robustness of online identification is improved by expanding the state observer to estimate the current disturbance without making artificial assumptions. Specifically, the three-degree-of-freedom dynamic equation of the double propeller propulsion USV is constructed. A linear model for online identification is derived by parameterization. Based on the least square criterion function, it is proved that the interactive identification method with disturbance estimation can improve the identification accuracy from the perspective of mathematical expectation. The extended state observer is designed to estimate the unknown disturbance in the model. The online interactive update improves the disturbance immunity of the identification algorithm. Finally, the effectiveness of the interactive identification algorithm is verified by simulation experiment and real ship experiment.
基金the National Natural Science Foundation of China(Grant No.52175240)the Major Scientific and Technological Projects of Xinjiang Production and Construction Corps(2018AA001/03)the Graduate Education Innovation Project of Xinjiang Uygur Autonomous Region(Grant No.XJ2022G083).
文摘Residual films on the sowing layer produced after mulching in Xinjiang farmland,harm the sowing quality and root growth of crops.In this study,a sowing layer residual film recovery machine based on a radial plate arc-shaped nail-tooth roller structure was designed.Meanwhile,the key device structures were designed and the main working parameters were analyzed.Then,taking the working depth,the forward speed of the machine and the rotation speed of the nail tooth roller as the test factors,and the film collection rate and film intertwining rate as the test indicators,the single factor tests and the Box-Behnken response surface tests were carried out to evaluate the performance of the sowing layer residual film recovery machine.Consequently,the results showed that the order of significant factors was the working depth,the forward speed of the machine,and the rotation speed of the nail tooth roller.Besides,the optimal working parameters were determined,which the working depth,the forward speed of the machine,and the rotation speed of the nail tooth roller were 100 mm,4.8 km/h,and 49.3 r/min,respectively.Moreover,the predicted value of the film collection rate was 69.20%.Finally,the verification test was taken with the optimal working parameter,and the results showed that the film collection rate was 66.84%,and the film intertwining rate was 1.39%.The relative error between the test value and the predicted value of the film collection rate was 3.40%.It indicated that the machine can perform the collection of sowing layer residual films.This study can provide a theoretical basis and reference for the design of new sowing layer residual film machines.
基金supported by the National Key Research and Development Program of China(No.2016YFB0301004)the National Natural Science Foundation of China(No.51771115)+1 种基金the Science and Technology Innovation Project(No.009-031-001)Research Program of Joint Research Center of Advanced Spaceflight Technologies(Nos.USCAST2015-25 and USCAST2016-18)
文摘This study was conducted to discuss the effect of rolling strain on microstructure and tensile properties of dual-phase Mg-8Li-3Al-2Zn-0.5 Y(wt%) alloy, which was prepared by casting, and then homogenized and rolled at 200℃. The rolling process was conducted with 10% reduction per pass and five different accumulated strains, varying from 10% to 70%. The results indicate that the as-cast and as-rolled Mg-8Li-3Al-2Zn-0.5Y alloys are composed of α-Mg, β-Li, AlLi and Al;Y phases. After rolling process,anisotropic microstructure was observed. a-Mg phase got elongated in both rolling direction and transverse direction with the addition of rolling strain. Consequently, the strength of the alloy in both directions was notably improved whereas the elongation declined, mainly caused by strain hardening and dispersion strengthening. The tensile properties of the as-rolled alloys in the RD, no matter the YS, UTS or the elongation, are higher than those of the TD due to their larger deformation strain and significant anisotropy in the hcp α-Mg phase. In addition, the fracture and strengthening mechanism of the tested alloys were also investigated systematically.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20090002110029the High Technology Research and Development Program of China under Grant No.2009AA03Z114the MOST(Ministry of Science and Technology)of China under Grant No.2010DFA72760
文摘Surface films that formed on molten AZ91D magnesium alloy in S02/air cover gases at 680 ℃ in a sealed furnace were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Auger electron spectroscopy. It is revealed that the film formed on molten AZ91D alloy surface in cover gas with high air content can prevent the molten AZ91D alloy from oxidation and ignition. The surface film contained three elements, namely magnesium, oxygen and sulfur, and was mainly composed of MgO and MgS. The properties of the film depended on air content in the cover gas and holding time. Thermodynamic calculation showed that MgSO4 was the stable phase, and it was concluded that the formation of MgS04 was important for the formation of the protective surface film in S02/air atmospheres.