Electrochemical nitrogen reduction reaction(NRR)under ambient conditions is highly desirable to achieve sustainable ammonia(NH3)production via an alternative carbon free strategy.Single-atom catalysts(SACs)with super ...Electrochemical nitrogen reduction reaction(NRR)under ambient conditions is highly desirable to achieve sustainable ammonia(NH3)production via an alternative carbon free strategy.Single-atom catalysts(SACs)with super high atomic utilization and catalytic efficiency exhibit great potential for NRR.Herein,a high-performance NRR SAC is facilely prepared via a simple deposition method to anchor Au single atoms onto porousβ-FeOOH nanotubes.The resulting Au-SA/FeOOH can efficiently drive NRR under ambient conditions,and the NH3 yield reaches as high as 2,860μg·h^(-1)·mg_(Au)^(-1)at-0.4 V vs.reversible hydrogen electrode(RHE)with 14.2%faradaic efficiency,much superior to those of all the reported Au-based electrocatalysts.Systematic investigations demonstrate that the synergy of much enhanced N_(2)adsorption,directional electron export,and mass transfer ability in Au-SA/FeOOH greatly contributes to the superior NRR activity.This work highlights a new insight into the design of high efficient NRR electrocatalysts by combination of porous metal oxide matrix and highly active single-atom sites.展开更多
The development of high-efficiency,earth-abundant,and durable oxygen reduction reaction(ORR)electrocatalysts is desirable for commercialization of fuel cells,but remains a great challenge.Herein,we develop a facile an...The development of high-efficiency,earth-abundant,and durable oxygen reduction reaction(ORR)electrocatalysts is desirable for commercialization of fuel cells,but remains a great challenge.Herein,we develop a facile and practical method for preparing efficient ORR electrocatalysts by directly growing metal-organic frameworks(MOFs)Co2(INA)4·DMF(HINA=isonicotinic acid,1)and{[Co2(TPI)(H2O)2(OH)]·DMF}(H3 TPI=5-(4-(tetrazol-5-yl)phenyl)isophthalic acid,2)on the commercial carbon(CC).The resulting MOF/CCs were further pyrolysis to functionalize CC by trace amount of cobalt oxides,resulting in two composites Cal-MOF-1/CC(3)and Cal-MOF-2/CC(4),which can be used as efficient electrocatalysts for ORR with remarkable stability and large diffusion-limited current density,even superior to that of commercial Pt/C catalysts.Detail study reveals that the linking ligands with different structure and nitrogen contents in 1 and 2 smartly influence the types of cobalt oxides.The catalytic activity of Co3O4/CoO/Co co-doped CC in 4 was much enhanced compared to that of CoO-doped CC in 3.展开更多
基金This work was supported by the Natural Science Foundation of Tianjin City of China(No.18JCJQJC47700)the Key Laboratory of Resource Chemistry of Chinese Ministry of Education(No.KLRC_ME1902)+2 种基金the Opening Project of Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Chinese Ministry of Education,the National Natural Science Foundation of China(No.21701168)Dalian high level talent innovation project(No.2019RQ063)the Open Project Foundation of State Key Laboratory of Structural Chemistry,and Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(No.20200021).
文摘Electrochemical nitrogen reduction reaction(NRR)under ambient conditions is highly desirable to achieve sustainable ammonia(NH3)production via an alternative carbon free strategy.Single-atom catalysts(SACs)with super high atomic utilization and catalytic efficiency exhibit great potential for NRR.Herein,a high-performance NRR SAC is facilely prepared via a simple deposition method to anchor Au single atoms onto porousβ-FeOOH nanotubes.The resulting Au-SA/FeOOH can efficiently drive NRR under ambient conditions,and the NH3 yield reaches as high as 2,860μg·h^(-1)·mg_(Au)^(-1)at-0.4 V vs.reversible hydrogen electrode(RHE)with 14.2%faradaic efficiency,much superior to those of all the reported Au-based electrocatalysts.Systematic investigations demonstrate that the synergy of much enhanced N_(2)adsorption,directional electron export,and mass transfer ability in Au-SA/FeOOH greatly contributes to the superior NRR activity.This work highlights a new insight into the design of high efficient NRR electrocatalysts by combination of porous metal oxide matrix and highly active single-atom sites.
基金supported by the National Natural Science Foundation of China(Nos.21722104,21671032)Natural Science Foundation of Tianjin City of China(Nos.18JCJQJC47700,17JCQNJC05100)+1 种基金Research Foundation of Thirteenth Five Years of Jilin Educational Committee(No.[2015]0056/JJKH20170605KJ)the Scientific Research Foundation for the Returned Overseas Scholars
文摘The development of high-efficiency,earth-abundant,and durable oxygen reduction reaction(ORR)electrocatalysts is desirable for commercialization of fuel cells,but remains a great challenge.Herein,we develop a facile and practical method for preparing efficient ORR electrocatalysts by directly growing metal-organic frameworks(MOFs)Co2(INA)4·DMF(HINA=isonicotinic acid,1)and{[Co2(TPI)(H2O)2(OH)]·DMF}(H3 TPI=5-(4-(tetrazol-5-yl)phenyl)isophthalic acid,2)on the commercial carbon(CC).The resulting MOF/CCs were further pyrolysis to functionalize CC by trace amount of cobalt oxides,resulting in two composites Cal-MOF-1/CC(3)and Cal-MOF-2/CC(4),which can be used as efficient electrocatalysts for ORR with remarkable stability and large diffusion-limited current density,even superior to that of commercial Pt/C catalysts.Detail study reveals that the linking ligands with different structure and nitrogen contents in 1 and 2 smartly influence the types of cobalt oxides.The catalytic activity of Co3O4/CoO/Co co-doped CC in 4 was much enhanced compared to that of CoO-doped CC in 3.