Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate...Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.展开更多
Soybean(Glycine max)responds to ambient light variation by undergoing multiform morphological alterations,influencing its yield potential and stability in the field.Phytochromes(PHYs)are plant-specific red(R)and far-r...Soybean(Glycine max)responds to ambient light variation by undergoing multiform morphological alterations,influencing its yield potential and stability in the field.Phytochromes(PHYs)are plant-specific red(R)and far-red(FR)light photoreceptors mediating photomorphogenesis and photoperiodic flowering.As an ancient tetraploid,soybean harbors four PHYA,two PHYB,and two PHYE paralogs.Except for GmPHYA2/E4 and GmPHYA3/E3,which have been identified as photoperiod-dependent flowering repressors,the functions of GmPHYs are still largely unclear.We generated a series of individual or combined mutations targeting the GmPHYA or GmPHYB genes using CRISPR/Cas9 technology.Phenotypic analysis revealed that GmPHYB1 mediates predominantly R-light induced photomorphogenesis,whereas GmPHYA2/E4 and GmPHYA3/E3,followed by GmPHYA1 and GmPHYB2,function redundantly and additively in mediating FR light responses in seedling stage.GmPHYA2/E4 and GmPHYA3/E3,with weak influence from GmPHYA1 and GmPHYA4,delay flowering time under natural long-day conditions.This study has demonstrated the diversified functions of GmPHYAs and GmPHYBs in regulating light response,and provides a core set of phytochrome mutant alleles for characterization of their functional mechanisms in regulating agronomic traits of soybean.展开更多
Isoflavonoids,secondary metabolites derived from the phenylalanine pathway,are predominantly bio-synthesized in legumes,especially soybean(Glycine max).They are not only essential for plant responses to biotic and abi...Isoflavonoids,secondary metabolites derived from the phenylalanine pathway,are predominantly bio-synthesized in legumes,especially soybean(Glycine max).They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health.In this study,we report that light signaling controls isoflavonoid biosynthesis in soybean.Blue-light photoreceptors(GmCRY1s,GmCRY2s,GmPHOT1s,and GmPHOT2s)and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation,whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis.GmPHOT1s and GmPHOT2s stabilize GmSTF1/2,whereas GmCOP1b promotes the degradation of these two proteins in soybean.GmSTF1/2 regulate the expression of approximately 27.9%of the genes involved in soybean isoflavonoid biosynthesis,including GmPAL2.1,GmPAL2.3,and GmUGT2.They also repress the expression of GmBBX4,a negative regulator of isoflavonoid biosynthesis in soybean.In addition,GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis.Thus,GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis.Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.展开更多
Pod coloration is a domestication-related trait in soybean,with modern cultivars typically displaying brown or tan pods,while their wild relative,Glycine soja,possesses black pods.However,the factors regulating this c...Pod coloration is a domestication-related trait in soybean,with modern cultivars typically displaying brown or tan pods,while their wild relative,Glycine soja,possesses black pods.However,the factors regulating this color variation remain unknown.In this study,we cloned and characterized L1,the classical locus responsible for black pods in soybean.By using map-based cloning and genetic analyses,we identified the causal gene of L1 and revealed that it encodes a hydroxymethylglutaryl-coenzyme A(CoA)lyase-like(HMGL-like)domain protein.Biochemical assays showed that L1 functions as a eucomic acid synthase and facilitates the synthesis of eucomic acid and piscidic acid,both of which contribute to coloration of pods and seed coats in soybean.Interestingly,we found that L1 plants are more prone to pod shattering under light exposure than l1 null mutants because dark pigmentation increases photothermal efficiency.Hence,pleiotropic effects of L1 on pod color and shattering,as well as seed pigmentation,likely contributed to the preference forl1 alleles during soybean domestication and improvement.Collectively,our study provides new insights into the mechanism of pod coloration and identifies a new target for future de novo domestication oflegume crops.展开更多
Soybean(Glycine max(L.) Merr.), grown for its plant oils and proteins, is one of the most important crops throughout the world.Generating stable and heritable transgenic soybeans is relatively inefficient;therefore, t...Soybean(Glycine max(L.) Merr.), grown for its plant oils and proteins, is one of the most important crops throughout the world.Generating stable and heritable transgenic soybeans is relatively inefficient;therefore, there is an urgent need for a simple and high-efficient transient transformation method by which to enable the investigation of gene functions in soybeans, which will facilitate the elucidation and improvement of the molecular mechanisms regulating the associated agronomic traits. We established a system of transient expression in soybean mesophyll protoplasts and obtained a high level of protoplast transfection efficiency(up to 83.5%). The subcellular activity of the protoplasts was well preserved, as demonstrated by the dynamic formation of GmCRY nucleus photobodies(NPs) and/or cytoplasmic photobody-like structures(CPs) in response to blue light.In addition, we showed that GmCRY1b CPs colocalized with GmCOP1b, a co-ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1(COP1), which provided new insight into the potential roles of GmCRY1s in the cytoplasm.展开更多
Soybean is an important legume crop that displays the classic shade avoidance syndrome(SAS),including exaggerated stem elongation,which leads to lodging and yield reduction under density farming conditions.Here,we com...Soybean is an important legume crop that displays the classic shade avoidance syndrome(SAS),including exaggerated stem elongation,which leads to lodging and yield reduction under density farming conditions.Here,we compared the effects of two shade signals,low red light to far-red light ratio(R:FR)and low blue light(LBL),on soybean status and revealed that LBL predominantly induces excessive stem elongation.We used CRISPR-Cas9-engineered Gmcry mutants to investigate the functions of seven cryptochromes(GmCRYs)in soybean and found that the four GmCRY1s overlap in mediating LBL-induced SAS.Lightactivated GmCRY1s increase the abundance of the bZlP transcription factors STF1 and STF2,which directly upregulate the expression of genes encoding GA2 oxidases to deactivate GA1 and repress stem elongation.Notably,GmCRY1b overexpression lines displayed multiple agronomic advantages over the wild-type control under both dense planting and intercropping conditions.Our study demonstrates the integration of GmCRY1-mediated signals with the GA metabolic pathway in the regulation of LBL-induced SAS in soybean.It also provides a promising option for breeding lodging-resistant,high-yield soybean cultivars in the future.展开更多
Cryptochrome 1(CRY1)is an important light receptor essential for de-etiolation of Arabidopsis seedlings.However,its function in regulating plant architecture remains unclear.Here,we show that mutation in CRY1 resulted...Cryptochrome 1(CRY1)is an important light receptor essential for de-etiolation of Arabidopsis seedlings.However,its function in regulating plant architecture remains unclear.Here,we show that mutation in CRY1 resulted in increased branching of Arabidopsis plants.To investigate the underlying mechanism,we analyzed the expression profiles of branching-related genes and found that the mRNA levels of Phytochrome Interaction Factor 4(PIF4)and PIF5 are significantly increased in the cry1 mutant.Genetic analysis showed that the pif4 or pif4pif5 mutant is epistatic to the cry1 mutant,and overexpression of PIF4 conferred increased branching.Moreover,we demonstrated that PIF4 proteins physically associate with the G-box motif within the PIF4 promoter to form a self-activated transcriptional feedback loop,while CRY1 represses this process in response to blue light.Taken together,this study suggests that the CRY1–PIF4 module regulates gene expression via forming a regulatory loop and shoot branching in response to ambient light conditions.展开更多
基金supported by the Sci-Tech Innovation 2030(2022ZD0400701-2)Agricultural Science and Technology Innovation Program of CAAS+1 种基金the National Natural Science Foundation of China(31871705)the Central Public-Interest Scientific Institution Basal Research Fund。
文摘Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.
基金supported by the National Natural Science Foundation of China(31871705,32072091)the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciencesthe Central Public-interest Scientific Institution Basal Research Fund。
文摘Soybean(Glycine max)responds to ambient light variation by undergoing multiform morphological alterations,influencing its yield potential and stability in the field.Phytochromes(PHYs)are plant-specific red(R)and far-red(FR)light photoreceptors mediating photomorphogenesis and photoperiodic flowering.As an ancient tetraploid,soybean harbors four PHYA,two PHYB,and two PHYE paralogs.Except for GmPHYA2/E4 and GmPHYA3/E3,which have been identified as photoperiod-dependent flowering repressors,the functions of GmPHYs are still largely unclear.We generated a series of individual or combined mutations targeting the GmPHYA or GmPHYB genes using CRISPR/Cas9 technology.Phenotypic analysis revealed that GmPHYB1 mediates predominantly R-light induced photomorphogenesis,whereas GmPHYA2/E4 and GmPHYA3/E3,followed by GmPHYA1 and GmPHYB2,function redundantly and additively in mediating FR light responses in seedling stage.GmPHYA2/E4 and GmPHYA3/E3,with weak influence from GmPHYA1 and GmPHYA4,delay flowering time under natural long-day conditions.This study has demonstrated the diversified functions of GmPHYAs and GmPHYBs in regulating light response,and provides a core set of phytochrome mutant alleles for characterization of their functional mechanisms in regulating agronomic traits of soybean.
基金supported by the Natural Science Foundation of Jiangsu for Distinguished Young Scholars (BK20211525)the National Natural Science Foundation of China (32270256,31970258)+2 种基金the Core Technology Development for Breeding Program of Jiangsu Province (JBGS-2021-014)the Jiangsu Collaborative Innovation Center for Modern Crop Production (to D.X.)Nanjing Agricultural University (start-up funding to D.X.).
文摘Isoflavonoids,secondary metabolites derived from the phenylalanine pathway,are predominantly bio-synthesized in legumes,especially soybean(Glycine max).They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health.In this study,we report that light signaling controls isoflavonoid biosynthesis in soybean.Blue-light photoreceptors(GmCRY1s,GmCRY2s,GmPHOT1s,and GmPHOT2s)and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation,whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis.GmPHOT1s and GmPHOT2s stabilize GmSTF1/2,whereas GmCOP1b promotes the degradation of these two proteins in soybean.GmSTF1/2 regulate the expression of approximately 27.9%of the genes involved in soybean isoflavonoid biosynthesis,including GmPAL2.1,GmPAL2.3,and GmUGT2.They also repress the expression of GmBBX4,a negative regulator of isoflavonoid biosynthesis in soybean.In addition,GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis.Thus,GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis.Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.
基金the National Key Research and Development Program of China(2021YFD1201601,2021YFF1001201)the earmarked fund for CARS(CARS-04-PSO1)+2 种基金the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciencesthe National Natural Science Foundation of China(grant no.32201734)the China Postdoctoral Science Foundation(grant no.2021M693465).
文摘Pod coloration is a domestication-related trait in soybean,with modern cultivars typically displaying brown or tan pods,while their wild relative,Glycine soja,possesses black pods.However,the factors regulating this color variation remain unknown.In this study,we cloned and characterized L1,the classical locus responsible for black pods in soybean.By using map-based cloning and genetic analyses,we identified the causal gene of L1 and revealed that it encodes a hydroxymethylglutaryl-coenzyme A(CoA)lyase-like(HMGL-like)domain protein.Biochemical assays showed that L1 functions as a eucomic acid synthase and facilitates the synthesis of eucomic acid and piscidic acid,both of which contribute to coloration of pods and seed coats in soybean.Interestingly,we found that L1 plants are more prone to pod shattering under light exposure than l1 null mutants because dark pigmentation increases photothermal efficiency.Hence,pleiotropic effects of L1 on pod color and shattering,as well as seed pigmentation,likely contributed to the preference forl1 alleles during soybean domestication and improvement.Collectively,our study provides new insights into the mechanism of pod coloration and identifies a new target for future de novo domestication oflegume crops.
基金supported by the National Key Research and Development Plan (2016YFD0101005)the National Natural Science Foundation of China (31871705 and 31422041)the Central Public-Interest Scientific Institution Basal Research Fund (Y2016JC13)
文摘Soybean(Glycine max(L.) Merr.), grown for its plant oils and proteins, is one of the most important crops throughout the world.Generating stable and heritable transgenic soybeans is relatively inefficient;therefore, there is an urgent need for a simple and high-efficient transient transformation method by which to enable the investigation of gene functions in soybeans, which will facilitate the elucidation and improvement of the molecular mechanisms regulating the associated agronomic traits. We established a system of transient expression in soybean mesophyll protoplasts and obtained a high level of protoplast transfection efficiency(up to 83.5%). The subcellular activity of the protoplasts was well preserved, as demonstrated by the dynamic formation of GmCRY nucleus photobodies(NPs) and/or cytoplasmic photobody-like structures(CPs) in response to blue light.In addition, we showed that GmCRY1b CPs colocalized with GmCOP1b, a co-ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1(COP1), which provided new insight into the potential roles of GmCRY1s in the cytoplasm.
基金This work was partially supported by the National Key Research and Development Plan(2016YFDO100201)the National Transgenic Scienceand Technology Program(2016ZX08010-002)+2 种基金the National Natural Science Foundation of China(31422041,31871705)the Agricultural Scienceand Technology Innovation Program(ASTIP)of the Chinese Academy ofAgricultural Sciencesthe Central Public-Interest Scientific InstitutionBasal Research Fund.
文摘Soybean is an important legume crop that displays the classic shade avoidance syndrome(SAS),including exaggerated stem elongation,which leads to lodging and yield reduction under density farming conditions.Here,we compared the effects of two shade signals,low red light to far-red light ratio(R:FR)and low blue light(LBL),on soybean status and revealed that LBL predominantly induces excessive stem elongation.We used CRISPR-Cas9-engineered Gmcry mutants to investigate the functions of seven cryptochromes(GmCRYs)in soybean and found that the four GmCRY1s overlap in mediating LBL-induced SAS.Lightactivated GmCRY1s increase the abundance of the bZlP transcription factors STF1 and STF2,which directly upregulate the expression of genes encoding GA2 oxidases to deactivate GA1 and repress stem elongation.Notably,GmCRY1b overexpression lines displayed multiple agronomic advantages over the wild-type control under both dense planting and intercropping conditions.Our study demonstrates the integration of GmCRY1-mediated signals with the GA metabolic pathway in the regulation of LBL-induced SAS in soybean.It also provides a promising option for breeding lodging-resistant,high-yield soybean cultivars in the future.
基金supported by the National Key Research and Development Plan(2016YFD0100304 and 2016YFD0101005)the National Natural Science Foundation of China(31771758 and 31871705)the Central Public-Interest Scientific Institution Basal Research Fund(Y2016JC13).
文摘Cryptochrome 1(CRY1)is an important light receptor essential for de-etiolation of Arabidopsis seedlings.However,its function in regulating plant architecture remains unclear.Here,we show that mutation in CRY1 resulted in increased branching of Arabidopsis plants.To investigate the underlying mechanism,we analyzed the expression profiles of branching-related genes and found that the mRNA levels of Phytochrome Interaction Factor 4(PIF4)and PIF5 are significantly increased in the cry1 mutant.Genetic analysis showed that the pif4 or pif4pif5 mutant is epistatic to the cry1 mutant,and overexpression of PIF4 conferred increased branching.Moreover,we demonstrated that PIF4 proteins physically associate with the G-box motif within the PIF4 promoter to form a self-activated transcriptional feedback loop,while CRY1 represses this process in response to blue light.Taken together,this study suggests that the CRY1–PIF4 module regulates gene expression via forming a regulatory loop and shoot branching in response to ambient light conditions.