期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reduction of the oxidative damage to H_(2)O_(2)-induced HepG2 cells via the Nrf2 signalling pathway by plant flavonoids Quercetin and Hyperoside
1
作者 Meijing Zhang Gaoshuai Zhang +10 位作者 xiangxing meng Xinxin Wang Jiao Xie Shaoshu Wang Biao Wang Jilite Wang Suwen Liu Qun Huang Xu Yang Jing Li Hao Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1864-1876,共13页
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat... Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside. 展开更多
关键词 HYPEROSIDE QUERCETIN HepG2 cell Oxidative damage Nrf2 signalling pathway
下载PDF
Naringin ameliorates H_(2)O_(2)-induced oxidative damage in cells and prolongs the lifespan of female Drosophila melanogaster via the insulin signaling pathway
2
作者 Xiaomei Du Kexin Wang +7 位作者 Xiaoyan Sang xiangxing meng Jiao Xie Tianxin Wang Xiaozhi Liu Qun Huang Nan Zhang Hao Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1231-1245,共15页
Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the an... Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions. 展开更多
关键词 Drosophila melanogaster Insulin signaling(IIS)pathway NARINGIN PC12 cell HepG2 cell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部