The non-probabilistic reliability in higher dimensional situations cannot be calcu- lated efficiently using traditional methods, which either require a large amount of calculation or cause significant error. In this s...The non-probabilistic reliability in higher dimensional situations cannot be calcu- lated efficiently using traditional methods, which either require a large amount of calculation or cause significant error. In this study, an efficient computational method is proposed for the cal- culation of non-probabilistic reliability based on the volume ratio theory, specificMly for linear structural systems. The common expression for non-probabilistic reliability is obtained through formula derivation with the amount of computation considerably reduced. The compatibility be- tween non-probabilistic and probabilistic safety measures is demonstrated through the Monte Carlo simulation. The high efficiency of the presented method is verified by several numerical examples.展开更多
基金Project supported by the major research project(No.MJ-F-2012-04)Defense Industrial Technology Development Program(No.JCKY2013601B001)the National Natural Science Foundation of China(Nos.11372025,11432002and 11572024)
文摘The non-probabilistic reliability in higher dimensional situations cannot be calcu- lated efficiently using traditional methods, which either require a large amount of calculation or cause significant error. In this study, an efficient computational method is proposed for the cal- culation of non-probabilistic reliability based on the volume ratio theory, specificMly for linear structural systems. The common expression for non-probabilistic reliability is obtained through formula derivation with the amount of computation considerably reduced. The compatibility be- tween non-probabilistic and probabilistic safety measures is demonstrated through the Monte Carlo simulation. The high efficiency of the presented method is verified by several numerical examples.