The helical undulator is in high demand in synchrotron radiation facilities for circular polarization generation.Owing to the higher field strength provided by the superconducting undulator compared to the conventiona...The helical undulator is in high demand in synchrotron radiation facilities for circular polarization generation.Owing to the higher field strength provided by the superconducting undulator compared to the conventional permanent-magnet undulator,greater research efforts should be directed toward this area.The helical superconducting undulator holds great potential in synchrotron radiation facilities,especially in low-energy storage rings that seek circularly polarized radiation with the highest possible radiation flux.Following the successful development of planar superconducting undulators,the Institute of High Energy Physics conducted research and development for the helical superconducting undulator.A 0.5-m-long Deltatype superconducting undulator prototype was developed and tested.Detailed information on the design,fabrication,and cryogenic testing of the prototype is presented and discussed.展开更多
A 3W1 superconducting wiggler(SCW)with the pole gap of 68 mm was successfully tested and installed in a BEPC II storage ring in November,2019.The goal of zero liquid helium consumption was achieved,and the cryogenic s...A 3W1 superconducting wiggler(SCW)with the pole gap of 68 mm was successfully tested and installed in a BEPC II storage ring in November,2019.The goal of zero liquid helium consumption was achieved,and the cryogenic system exhibited a 12%residual cooling capacity(approximately 0.69 W@4.2 K).The 3W1-SCW was set to operate at 2.49 T and has been operating for more than seven months.Three instances of magnet quenching occurred during the normal operation.The evaporated helium gas can be recycled to the helium gas recycling system when the pressure in the helium tank is higher than the parameter value(the setpoint of the pressure value is 1.2 bara).The cryogenic system can be recovered within 4 h if sufficient liquid helium is available to inject into the cryostat.展开更多
A 16-pole superconducting multipole wiggler with a large gap of 68 mm was designed and fabricated to serve as a multipole wiggler for HEPS-TF.The wiggler consists of 16 pairs of NbTi superconducting coils with a perio...A 16-pole superconducting multipole wiggler with a large gap of 68 mm was designed and fabricated to serve as a multipole wiggler for HEPS-TF.The wiggler consists of 16 pairs of NbTi superconducting coils with a period length of 170 mm,and its maximum peak field is 2.6 Tesla.In magnet design,magnet poles were optimized.Furthermore,the Lorentz force on the coils and electromagnetic force between the upper and lower halves were computed and analyzed along with the stored energy and inductance at different currents.To enhance the critical current of the magnet coil,all the pole coils selected for the magnet exhibited excellent performance,and appropriate prestress derived from the coil force analysis was applied to the pole coils during magnet assembly.The entire magnet structure was immersed in 4.2-K liquid helium in the cryostat cooled solely by four two-stage cryocoolers,and the performance test of the superconducting wiggler was appropriately completed.Based on the measured results,the first and second field integrals on the axis of the superconducting wiggler were significantly improved at different field levels after the compensation of the corrector coils.Subsequently,the wiggler was successfully installed in the storage ring of BEPCII operation with beams.展开更多
Purpose Generally,the front-end computer(FEC)in a digital quench detector always acts as a communication platform between front-end data acquisition system and upper monitoring computer.SoC FPGA is the optimal option ...Purpose Generally,the front-end computer(FEC)in a digital quench detector always acts as a communication platform between front-end data acquisition system and upper monitoring computer.SoC FPGA is the optimal option for building system on chip.Aiming at developing a digital quench detector with higher integration degree,lower cost and stronger portability that meets the needs of different kinds of superconducting magnets,it is essential to develop a universal FEC based on SoC FPGA.Methods The development platform is Cyclone V SX SoC FPGA development board which has a FPGA integrated with an ARM processor.The hardware architecture of the FEC is built by using IP cores and developing custom function modules.On the other hand,the software design mainly consists of transplanting the embedded Linux and developing essential application program for communicating functions.Results The main function of FEC is reading quench detection data and transferring it to upper monitor computer through Ethernet;the test results indicate that the system design is reasonable and the function is complete.Conclusions The implementing of FEC on SoC FPGA has set a proper platform for upgrading to support more function for digital quench detection,and it is feasible to integrate more discrete devices onto one piece of SoC FPGA.展开更多
基金supported by the National Natural Science Foundation of China(No.E1113R5C10)。
文摘The helical undulator is in high demand in synchrotron radiation facilities for circular polarization generation.Owing to the higher field strength provided by the superconducting undulator compared to the conventional permanent-magnet undulator,greater research efforts should be directed toward this area.The helical superconducting undulator holds great potential in synchrotron radiation facilities,especially in low-energy storage rings that seek circularly polarized radiation with the highest possible radiation flux.Following the successful development of planar superconducting undulators,the Institute of High Energy Physics conducted research and development for the helical superconducting undulator.A 0.5-m-long Deltatype superconducting undulator prototype was developed and tested.Detailed information on the design,fabrication,and cryogenic testing of the prototype is presented and discussed.
基金supported in part by the High Energy Photon Source Test Facility and the Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences
文摘A 3W1 superconducting wiggler(SCW)with the pole gap of 68 mm was successfully tested and installed in a BEPC II storage ring in November,2019.The goal of zero liquid helium consumption was achieved,and the cryogenic system exhibited a 12%residual cooling capacity(approximately 0.69 W@4.2 K).The 3W1-SCW was set to operate at 2.49 T and has been operating for more than seven months.Three instances of magnet quenching occurred during the normal operation.The evaporated helium gas can be recycled to the helium gas recycling system when the pressure in the helium tank is higher than the parameter value(the setpoint of the pressure value is 1.2 bara).The cryogenic system can be recovered within 4 h if sufficient liquid helium is available to inject into the cryostat.
文摘A 16-pole superconducting multipole wiggler with a large gap of 68 mm was designed and fabricated to serve as a multipole wiggler for HEPS-TF.The wiggler consists of 16 pairs of NbTi superconducting coils with a period length of 170 mm,and its maximum peak field is 2.6 Tesla.In magnet design,magnet poles were optimized.Furthermore,the Lorentz force on the coils and electromagnetic force between the upper and lower halves were computed and analyzed along with the stored energy and inductance at different currents.To enhance the critical current of the magnet coil,all the pole coils selected for the magnet exhibited excellent performance,and appropriate prestress derived from the coil force analysis was applied to the pole coils during magnet assembly.The entire magnet structure was immersed in 4.2-K liquid helium in the cryostat cooled solely by four two-stage cryocoolers,and the performance test of the superconducting wiggler was appropriately completed.Based on the measured results,the first and second field integrals on the axis of the superconducting wiggler were significantly improved at different field levels after the compensation of the corrector coils.Subsequently,the wiggler was successfully installed in the storage ring of BEPCII operation with beams.
文摘Purpose Generally,the front-end computer(FEC)in a digital quench detector always acts as a communication platform between front-end data acquisition system and upper monitoring computer.SoC FPGA is the optimal option for building system on chip.Aiming at developing a digital quench detector with higher integration degree,lower cost and stronger portability that meets the needs of different kinds of superconducting magnets,it is essential to develop a universal FEC based on SoC FPGA.Methods The development platform is Cyclone V SX SoC FPGA development board which has a FPGA integrated with an ARM processor.The hardware architecture of the FEC is built by using IP cores and developing custom function modules.On the other hand,the software design mainly consists of transplanting the embedded Linux and developing essential application program for communicating functions.Results The main function of FEC is reading quench detection data and transferring it to upper monitor computer through Ethernet;the test results indicate that the system design is reasonable and the function is complete.Conclusions The implementing of FEC on SoC FPGA has set a proper platform for upgrading to support more function for digital quench detection,and it is feasible to integrate more discrete devices onto one piece of SoC FPGA.