Objective: To investigate the molecular mechanisms of Yuye Decotion in the treatment of diabetic kidney disease using network pharmacology methods and molecular docking techniques. Methods: Obtain the transcriptome ge...Objective: To investigate the molecular mechanisms of Yuye Decotion in the treatment of diabetic kidney disease using network pharmacology methods and molecular docking techniques. Methods: Obtain the transcriptome gene expression of diabetic nephropathy through GEO database, and extract genes related to autophagy. Screen the active ingredients and corresponding targets of Yuye Decoction through the TCMSP database, and map the drug prediction targets and disease targets to obtain the autophagy-related Yuye treatment targets for diabetic nephropathy point. Use String database combined with Cytoscape 3.7.2 software to construct the "drug-active ingredient-target" network and protein interaction network of Yuyetang for the treatment of diabetic nephropathy. The target point of liquid soup in the treatment of diabetic nephropathy was analyzed by GO biological process enrichment analysis and KEGG pathway enrichment analysis, and finally used Pymol and other software to analyze the core active components of Yuye Decotion and The core target protein undergoes molecular docking verification. Results: (i)100 eligible diabetic nephropathy and autophagy related genes were screened, and the potential targets of Yuye Decoction were 1,428. The acquired genes related to diabetic nephropathy and autophagy were mapped to potential targets of Yuye Decoction, and 22 therapeutic targets were obtained. GO biological process enrichment analysis and KEGG pathway enrichment analysis found that the pathways related to autophagy in the treatment of diabetic nephropathy by Yuye Decoction may include mTOR signaling pathway, phospholipase D signaling pathway, insulin resistance, EGFR tyrosine kinase inhibitor resistance, Apoptosis, PI3K /Akt signaling pathway, NF-κB signaling pathway, etc. (ii)The protein interaction network shows that VEGFA, ERBB2, GASP3, MAPK8, MYC, CDKN1A, EGFR, BCL2L1 may be the key targets of Yuye Decoction in the treatment of diabetic nephropathy. Molecular docking realizes the binding of 4 core active ingredients to 8 core target proteins. Conclusions: The research results show that Yuye Decoction treats diabetic nephropathy through multi-component, multi-target, and multi-pathway action, and provides new theoretical basis for the study of pharmacological effects and clinical application of Yuye Decoction in the treatment of diabetic nephropathy in autophagy-related aspects.展开更多
The blended-wing-body shape vehicle is a new type of water surface vehicle with a large square coefficient. The interference of the wave systems under a high speed condition is more significant for the blended-wing-bo...The blended-wing-body shape vehicle is a new type of water surface vehicle with a large square coefficient. The interference of the wave systems under a high speed condition is more significant for the blended-wing-body shape vehicle and the dynamic characteristics of the new type vehicle are very different from that of a traditional vehicle. In this paper, the implicit volume of fluid(VOF) method is adopted to simulate the wave resistance of the high speed blended wing body vehicle, and a semi-relative reference frame method is proposed to compute the maneuvering coefficients. The effects of the navigation speed, the drift angle and the rotating radius are studied. The dimensional analysis method is used to assess the influence of Fr and L/R on the results. The wave making resistance coefficient against the speed sees a large fluctuation because of the serious wave interference. The lateral rotation maneuvering characteristics under the surface navigation condition is nonlinear and more complex than under the under water condition, which is quite different to control.展开更多
基金National Natural Science Foundation of China,Regional Fund(No.81860836)。
文摘Objective: To investigate the molecular mechanisms of Yuye Decotion in the treatment of diabetic kidney disease using network pharmacology methods and molecular docking techniques. Methods: Obtain the transcriptome gene expression of diabetic nephropathy through GEO database, and extract genes related to autophagy. Screen the active ingredients and corresponding targets of Yuye Decoction through the TCMSP database, and map the drug prediction targets and disease targets to obtain the autophagy-related Yuye treatment targets for diabetic nephropathy point. Use String database combined with Cytoscape 3.7.2 software to construct the "drug-active ingredient-target" network and protein interaction network of Yuyetang for the treatment of diabetic nephropathy. The target point of liquid soup in the treatment of diabetic nephropathy was analyzed by GO biological process enrichment analysis and KEGG pathway enrichment analysis, and finally used Pymol and other software to analyze the core active components of Yuye Decotion and The core target protein undergoes molecular docking verification. Results: (i)100 eligible diabetic nephropathy and autophagy related genes were screened, and the potential targets of Yuye Decoction were 1,428. The acquired genes related to diabetic nephropathy and autophagy were mapped to potential targets of Yuye Decoction, and 22 therapeutic targets were obtained. GO biological process enrichment analysis and KEGG pathway enrichment analysis found that the pathways related to autophagy in the treatment of diabetic nephropathy by Yuye Decoction may include mTOR signaling pathway, phospholipase D signaling pathway, insulin resistance, EGFR tyrosine kinase inhibitor resistance, Apoptosis, PI3K /Akt signaling pathway, NF-κB signaling pathway, etc. (ii)The protein interaction network shows that VEGFA, ERBB2, GASP3, MAPK8, MYC, CDKN1A, EGFR, BCL2L1 may be the key targets of Yuye Decoction in the treatment of diabetic nephropathy. Molecular docking realizes the binding of 4 core active ingredients to 8 core target proteins. Conclusions: The research results show that Yuye Decoction treats diabetic nephropathy through multi-component, multi-target, and multi-pathway action, and provides new theoretical basis for the study of pharmacological effects and clinical application of Yuye Decoction in the treatment of diabetic nephropathy in autophagy-related aspects.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFC0300802)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2015015)
文摘The blended-wing-body shape vehicle is a new type of water surface vehicle with a large square coefficient. The interference of the wave systems under a high speed condition is more significant for the blended-wing-body shape vehicle and the dynamic characteristics of the new type vehicle are very different from that of a traditional vehicle. In this paper, the implicit volume of fluid(VOF) method is adopted to simulate the wave resistance of the high speed blended wing body vehicle, and a semi-relative reference frame method is proposed to compute the maneuvering coefficients. The effects of the navigation speed, the drift angle and the rotating radius are studied. The dimensional analysis method is used to assess the influence of Fr and L/R on the results. The wave making resistance coefficient against the speed sees a large fluctuation because of the serious wave interference. The lateral rotation maneuvering characteristics under the surface navigation condition is nonlinear and more complex than under the under water condition, which is quite different to control.