Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase(PAP) catalyzes ...Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase(PAP) catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerols and inorganic orthophosphates. This reaction is integral in the synthesis of triacylglycerols. In this study, the mRNA level of the PAP isoform CrPAP2 in a species of Chlamydomonas was found to increase in nitrogen-free conditions. Silencing of the CrPAP2 gene using RNA interference resulted in the decline of lipid content by 2.4%–17.4%. By contrast, over-expression of the CrPAP2 gene resulted in an increase in lipid content by 7.5%–21.8%. These observations indicate that regulation of the CrPAP2 gene can control the lipid content of the algal cells. In vitro CrPAP2 enzyme activity assay indicated that the cloned CrPAP2 gene exhibited biological activities.展开更多
Dear Editor, Triacylglycerols (triglycerides) (TAGs), as the major storage forms of energy, mainly are stored in adipocytes, myocytes, enterocytes, hepatocytes, and mammary epithelial cells in mammals, oilseeds i...Dear Editor, Triacylglycerols (triglycerides) (TAGs), as the major storage forms of energy, mainly are stored in adipocytes, myocytes, enterocytes, hepatocytes, and mammary epithelial cells in mammals, oilseeds in plants, and lipid droplets in microorgan- isms (Yen et al., 2008). Aside from energy storage, TAGs have essential functions in multiple physiological processes. In plants, TAGs are crucial for seed oil accumulation, germina- tion, and seedling development (Zhang et al., 2005, 2009). Notably, TAGs derived from plants and microorganisms could serve as the feedstock for biofuels production (Deng et al., 2009). Therefore, understanding of the molecular basis of TAGs bio- synthesis and storage is of considerable economic importance.展开更多
Hevein has been found to be an essential element in coagulation of rubber particles in latex of rubber trees. In a previous study, we cloned a 1 241-bp fragment of a 5' upstream region of the hevein gene by genome wa...Hevein has been found to be an essential element in coagulation of rubber particles in latex of rubber trees. In a previous study, we cloned a 1 241-bp fragment of a 5' upstream region of the hevein gene by genome walking. This fragment was analyzed by a 5' end nested deletion method in the present study, fused with a uidA (gus) gene to produce a series of tested constructs, which were transferred into C-serum of latex and the Gus activities were detected. Results showed that the fragment from -749 to -292 was sufficient for expression of gus gene in latex, and the fragment from -292 to -168 was crucial in response to abscisic acid inducement. In a transient transgenic test of rubber leaf with particle bombardment, construct Hev749 conferred gus-specific expression in veins, in which the latex tubes mainly distributed. This implies that the fragment from -749 to -292 was laticiferous-specific.展开更多
基金supported by the National Natural Science Foundation of China(Nos.30960032 and 31000117)the Major Technology Project of Hainan(No.ZDZX2013023-1)+2 种基金the National Nonprofit Institute Research Grants(Nos.CATAS-ITBB 110507 and CATAS-ITBB130305)the Fundamental Scientific Research Funds for Chinese Academy of Tropical Agricultural Sciences(No.1630052013009)the Natural Science Foundation of Hainan Province(No.313077),China
文摘Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase(PAP) catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerols and inorganic orthophosphates. This reaction is integral in the synthesis of triacylglycerols. In this study, the mRNA level of the PAP isoform CrPAP2 in a species of Chlamydomonas was found to increase in nitrogen-free conditions. Silencing of the CrPAP2 gene using RNA interference resulted in the decline of lipid content by 2.4%–17.4%. By contrast, over-expression of the CrPAP2 gene resulted in an increase in lipid content by 7.5%–21.8%. These observations indicate that regulation of the CrPAP2 gene can control the lipid content of the algal cells. In vitro CrPAP2 enzyme activity assay indicated that the cloned CrPAP2 gene exhibited biological activities.
基金This work was supported by grants from the National Natural Science Foundation of China,from National Nonprofit Institute Research Grants
文摘Dear Editor, Triacylglycerols (triglycerides) (TAGs), as the major storage forms of energy, mainly are stored in adipocytes, myocytes, enterocytes, hepatocytes, and mammary epithelial cells in mammals, oilseeds in plants, and lipid droplets in microorgan- isms (Yen et al., 2008). Aside from energy storage, TAGs have essential functions in multiple physiological processes. In plants, TAGs are crucial for seed oil accumulation, germina- tion, and seedling development (Zhang et al., 2005, 2009). Notably, TAGs derived from plants and microorganisms could serve as the feedstock for biofuels production (Deng et al., 2009). Therefore, understanding of the molecular basis of TAGs bio- synthesis and storage is of considerable economic importance.
基金the National Natural Science Foundation of China (39960065)
文摘Hevein has been found to be an essential element in coagulation of rubber particles in latex of rubber trees. In a previous study, we cloned a 1 241-bp fragment of a 5' upstream region of the hevein gene by genome walking. This fragment was analyzed by a 5' end nested deletion method in the present study, fused with a uidA (gus) gene to produce a series of tested constructs, which were transferred into C-serum of latex and the Gus activities were detected. Results showed that the fragment from -749 to -292 was sufficient for expression of gus gene in latex, and the fragment from -292 to -168 was crucial in response to abscisic acid inducement. In a transient transgenic test of rubber leaf with particle bombardment, construct Hev749 conferred gus-specific expression in veins, in which the latex tubes mainly distributed. This implies that the fragment from -749 to -292 was laticiferous-specific.