Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power tr...Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power transfer(WPT)systems.Such beamforming schemes are classified as discrete and non-convex integer program-ming problems.In this paper,we propose a Monte-Carlo(MC)based random energy passive beamforming of RIS to achieve the maximum received power of electromagnetic(EM)WPT systems.Generally,the Gibbs sampling and re-sampling methods are employed to generate phase shift vector samples.And the sample with the maximum received power is considered the optimal solution.In order to adapt to the application scenarios,we develop two types of passive beamforming algorithms based on such MC sampling methods.The first passive beamforming uses an approximation of the integer programming as the initial sample,which is calculated based on the channel information.And the second one is a purely randomized algorithm with the only total received power feedback.The proposed methods present several advantages for RIS control,e.g.,fast convergence,easy implementation,robustness to the channel noise,and limited feedback requirement,and they are applicable even if the channel information is unknown.According to the simulation results,our proposed methods outperform other approxi-mation and genetic algorithms.With our methods,the WPT system even significantly improves the power effi-ciency in the nonline-of-sight(NLOS)environment.展开更多
Objective:To investigate the effect of auricular acupuncture on postoperative pain and gastrointestinal motility recovery after laparoscopic surgery for colorectal cancer.Methods:The clinical data of patients who unde...Objective:To investigate the effect of auricular acupuncture on postoperative pain and gastrointestinal motility recovery after laparoscopic surgery for colorectal cancer.Methods:The clinical data of patients who underwent laparoscopic radical surgery for colorectal cancer in our hospital from April 2020 to December 2021 were collected.Based on the inclusion and exclusion criteria,76 patients were included in the retrospective analysis.Depending on whether they received auricular acupuncture or not,the patients were divided into two groups:46 patients in the experimental group(auricular acupuncture)and 30 patients in the control group.The differences between the two groups were analyzed.Results:The time to first flatus of the experimental group was significantly shorter than that of the control group(52.2±7.36 h versus 66.3±7.83 h;P<0.001).Similarly,the time to first defecation of the experimental group was significantly shorter than that of the control group(76.3±7.76 h versus 86.1±10.79 h;P<0.001).The time to first fluid intake of the auricular group was significantly shorter than that of the control group(90.4±8.92 h versus 107.3±9.66 h,P<0.001).Compared with the control group,the experimental group scored significantly lower on the visual analogue scale on postoperative days 2 and 3(P<0.001).Conclusion:Auricular acupuncture is an effective traditional Chinese medicine external treatment method.It can promote gastrointestinal motility recovery in patients after laparoscopic radical surgery for colorectal cancer and also reduce postoperative pain and discomfort.Furthermore,this therapy is easy to operate and well-accepted by patients.Therefore,it should be strongly promoted in clinical practice.展开更多
An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.T...An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.展开更多
The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series ...The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.展开更多
Objective: To assess the safety and clinical antiangiogenic effect of recombinant adenovirus-p53 (rAd-p53) combined with hyperthermia plus or not plus radiotherapy in advanced cancer. Methods: Expression of Vascul...Objective: To assess the safety and clinical antiangiogenic effect of recombinant adenovirus-p53 (rAd-p53) combined with hyperthermia plus or not plus radiotherapy in advanced cancer. Methods: Expression of Vascular epithelial growth factor (VEGF) after intratumoral injection of rAd-p53 was assayed by immunohistochemistry (IHC) imaging. Forty-four patients with advanced cancer were enrolled into this clinical study. The patients were intratumorally injected with rAd-p53 (Gendicine) at a dose of 1×1012 vp once a week, with a total of 4-54 (mean 7.7) times. Total of 4-29 (mean 8.5) times of hyperthermia was given to the patients. Among the 44 patients, 30 patients were concurrently added with radiotherapy of a total dose 30-76 Gy/15-38 f/3-8 w (mean 58 Gy). Results: Before and after intratumoral injection of rAd-p53, the VEGF IHC positive cell scores were 2.80 and 1.50, respectively (P=0.031). The treatment of rAd-p53 combined with hyperthermia plus or not plus radiotherapy in advanced cancer achieved CR rate of 13.60% (6/44), and PR rate of 29.6% (13/44), and thus the effective rate was 43.2%. In addition to 6 patients with CR, 19 patients (19/38, 50.0%) had low density area (LDA) of more than 50% area on CT image within tumor indicating tumor tissue necrosis. Conclusions: Our data indicate that rAd-p53 inhibits VEGF expression and angiogenesis, and promotes tumor necrosis and shrinkage induced by hyperthermia plus or not plus radiotherapy in advanced cancer.展开更多
The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-...The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.展开更多
Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6-8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with...Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6-8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with imposed zonally-uniform vertical velocity, zonal wind, horizontal temperature, and vapor advection from NCEP/Global Data Assimilation System (GDAS) data. The simulation data that are validated with observations are examined to study physical causes associated with surface rainfall processes during the landfall. The time- and domain-mean analysis shows that when Krosa approached the eastern coast of China on 6 October, the water vapor convergence over land caused a local atmospheric moistening and a net condensation that further produced surface rainfall and an increase of cloud hydrometeor concentration. Meanwhile, latent heating was balanced by advective cooling and a local atmospheric warming. One day later, the enhancement of net condensation led to an increase of surface rainfall and a local atmospheric drying, while the water vapor convergence weakened as a result of the landfall-induced deprivation of water vapor flux. At the same time, the latent heating is mainly compensated the advective cooling. Further weakening of vapor convergence on 8 October enhanced the local atmospheric drying while the net condensation and associated surface rainfall was maintained. The latent heating is balanced by advective cooling and a local atmospheric cooling.展开更多
Before the major earthquake or rock damage occurs,it is often accompanied by a sudden change in the degree of non-uniformity of the strain field.In order to find a stronger non-uniformity signal before the rock failur...Before the major earthquake or rock damage occurs,it is often accompanied by a sudden change in the degree of non-uniformity of the strain field.In order to find a stronger non-uniformity signal before the rock failure,the coefficient of variation(Cv)is examined and reformed in this study.We test the Cv calculation way of the"normal-abnormal"model proposed in the previous studies.Based on the analysis of the physical process of rock failure and its relationship to the shear strain field,we construct a new way to calculate the Cv value.The variation of shear strain field on rock sample with the increase of stress is obtained by the digital speckle correlation method(DSCM).The new Cv value calculation way is used to study the non-uniformity of the spatial distribution for the shear strain field.The results show that this Cv calculation way can get more obvious abnormal signals.When the number of observation points are limited,the specific distribution of points can increase the signal strength,which may provide reference for the research on precursor detection of earthquakes.展开更多
Predecessor rain events(PREs) in the Yangtze River Delta(YRD) region associated with the South China Sea and Northwest Pacific Ocean(SCS-WNPO) tropical cyclones(TCs) are investigated during the period from 2010 to 201...Predecessor rain events(PREs) in the Yangtze River Delta(YRD) region associated with the South China Sea and Northwest Pacific Ocean(SCS-WNPO) tropical cyclones(TCs) are investigated during the period from 2010 to 2019.Results indicate that approximately 10% of TCs making landfall in China produce PREs over the YRD region;however,they are seldom forecasted. PREs often occur over the YRD region when TCs begin to be active in the SCS-WNPO with westward paths, whilst the cold air is still existing or beginning to be present. PREs are more likely to peak in June and September. The distances between the PRE centers and the parent TC range from 900 to 1700 km. The median value of rain amounts and the median lifetime of PREs is approximately 200 mm and 24 h, respectively. Composite results suggest that PREs form in the equatorward jet-entrance region of the upper-level westerly jet(WJ), where a 925-hPa equivalent potential temperature ridge is located east of a 500-hPa trough. Deep moisture is transported from the TC vicinity to the remote PREs region. The ascent of this deep moist air in front of the 500-hPa trough and frontogenesis beneath the equatorward entrance region of the WJ is advantageous for the occurrence of PREs in the YRD region. The upper-level WJ may be affected by the subtropical high and westerly trough in the Northwest Pacific Ocean, and the occurrence of PREs may favor the maintenance of the upper-level WJ. The upper-level outflow of TCs in the SCS plays a secondary role.展开更多
In this study,Typhoon Rammasun(2014)was simulated using the Weather Research and Forecasting model to examine the kinetic energy during rapid intensification(RI).Budget analyses revealed that in the inner area of the ...In this study,Typhoon Rammasun(2014)was simulated using the Weather Research and Forecasting model to examine the kinetic energy during rapid intensification(RI).Budget analyses revealed that in the inner area of the typhoon,the conversion from symmetric divergent kinetic energy associated with the collocation of strong cyclonic circulation and inward flow led to an increase in the symmetric rotational kinetic energy in the lower troposphere.The increase in the symmetric rotational kinetic energy in the mid and upper troposphere resulted from the upward transport of symmetric rotational kinetic energy from the lower troposphere.In the outer area,both typhoon and Earth’s rotation played equally important roles in the conversion from symmetric divergent kinetic energy to symmetric rotational kinetic energy in the lower troposphere.The decrease in the symmetric rotational kinetic energy in the upper troposphere was caused by the conversion to asymmetric rotational kinetic energy through the collocation of symmetric tangential rotational winds and the radial advection of asymmetric tangential rotational winds by radial environmental winds.展开更多
Earthquakes result from continuous geodynamic processes.A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks.Therefore,in...Earthquakes result from continuous geodynamic processes.A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks.Therefore,in this study,uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting.The center of each marble plate(105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot(depth:2 mm,width:0.5 mm).The deformation and destruction processes of the rock surface were recorded using a high-speed camera.The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages.The accumulative and incremental displacement fields u and v,strain field exand e_(y),and shear strain e_(xy) were analyzed.When the loading level reached its ultimate value,the strain field was concentrated around the prefabricated slot.The concentration reached a maximum at the ends of the prefabricated slot.The magnitude of shear strain reached 0.1.This experiment contributes to our understanding of the dynamic process of active faulting.展开更多
In industrial fermentation processes,microorganisms often encounter acid stress,which significantly impact their productivity.This study focused on the acid-resistant module composed of small RNA(sRNA)DsrA and the sRN...In industrial fermentation processes,microorganisms often encounter acid stress,which significantly impact their productivity.This study focused on the acid-resistant module composed of small RNA(sRNA)DsrA and the sRNA chaperone Hfq.Our previous study had shown that this module improved the cell growth of Escherichia coli MG1655 at low pH,but failed to obtain this desired phenotype in industrial strains.Here,we performed a quantitative analysis of DsrA-Hfq module to determine the optimal expression mode.We then assessed the po-tential of the CymR-based negative auto-regulation(NAR)circuit for industrial application,under different media,strains and pH levels.Growth assay at pH 4.5 revealed that NAR-05D04H circuit was the best acid-resistant circuit to improve the cell growth of E.coli MG1655.This circuit was robust and worked well in the industrial lysine-producing strain E.coli SCEcL3 at a starting pH of 6.8 and without pH control,resulting in a 250%increase in lysine titer and comparable biomass in shaking flask fermentation compared to the parent strain.This study showed the practical application of NAR circuit in regulating DsrA-Hfq module,effectively and robustly improving the acid tolerance of industrial strains,which provides a new approach for breeding in-dustrial strains with tolerance phenotype.展开更多
Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that ...Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds,but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds.The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation.The increases(decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence(absence) of radiative effects of ice clouds,or the removal of radiative effects of ice clouds in the presence(absence) of radiative effects of water clouds,correspond mainly to the enhancements(reductions) in net condensation.The mean rain rate is a product of rain intensity and fractional rainfall coverage.The radiation-induced difference in the mean rain rate is related to the difference in rain intensity.The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.展开更多
In this study, the effects of key ice microphysical processes on the pre-summer heavy rainfall over southern China during 3-8 June 2008 were investigated. A series of two-dimensional sensitivity cloud-resolving model ...In this study, the effects of key ice microphysical processes on the pre-summer heavy rainfall over southern China during 3-8 June 2008 were investigated. A series of two-dimensional sensitivity cloud-resolving model simulations were forced with zonally uniform vertical velocity, zonal wind, horizontal temperature, and water vapor advection data from the National Centers for Environmental Prediction (NCEP)/Global Data Assimilation System (GDAS). The effects of key ice microphysical processes on the responses of rainfall to large-scale forcing were analyzed by comparing two sensitivity experiments with a control experiment. In one sensitivity experiment, ice crystal radius, associated with depositional growth of snow from cloud ice, was reduced from 100 #m in the control experiment to 50 #m, and in the other sensitivity experiment the efficiency of the growth of graupel from the accretion of snow was reduced to 50~ from 100% in the control experiment. The results show that the domain-mean rainfall responses to these ice microphysical processes are stronger during the decay phase than during the onset and mature phases. During the decay phase, the increased mean rain rate resulting from the decrease in ice crystal radius is associated with the enhanced mean local atmospheric drying, the increased mean local hydrometeor loss, and the suppressed mean water vapor divergence. The increased mean rain rate caused by the reduction in accretion efficiency is related to the reduced mean water vapor divergence and the enhanced mean local hydrometeor loss.展开更多
Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) h...Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed large-scale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convective- related processes and their ensemble effects on large-scale circulations. This review the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.展开更多
Most studies focus on the adaptive immune cells in the GVHD pathogenesis,while little is known about innate immune cells in GVHD occurrence and development,especially macrophages.Meanwhile,a higher incidence of graft ...Most studies focus on the adaptive immune cells in the GVHD pathogenesis,while little is known about innate immune cells in GVHD occurrence and development,especially macrophages.Meanwhile,a higher incidence of graft versus host disease(GVHD)is also found in the elderly patients.Though advances have been made in the modification of macrophages influenced by the inflamm-ageing,there is still no review on the role of macrophages in GVHD and the association between GVHD and the altered macrophages by inflamm-ageing.In this review,we focus on the potential age-related modifications of macrophage in GVHD,which contributes to the change of morbidity and mortality of GVHD.Via literature review,we found that the infiltration of macrophages is associated with GVHD and macrophages are modified in inflamm-ageing state,including the proliferation,migration,phagocytosis,antigen presentation,interaction with other immune cells,and pro-fibrosis.We suppose that altered macrophage functions in inflamm-ageing state contribute to GVHD in elderly patients.展开更多
Impacts of initial conditions on cloud-resolving model simulations are investigated using a series of sensitivity experiments. Five experiments with perturbed initial temperature, moisture, and cloud conditions are co...Impacts of initial conditions on cloud-resolving model simulations are investigated using a series of sensitivity experiments. Five experiments with perturbed initial temperature, moisture, and cloud conditions are conducted and compared to the control experiment. The model is forced by the large-scale vertical velocity and zonal wind observed and derived from NCEP/Global Data Assimilation System (GDAS). The results indicate that model predictions of rainfall are much more sensitive to the initial conditions than those of temperature and moisture. Further analyses of the surface rainfall equation and the moisture and cloud hydrometeor budgets reveal that the calculations of vapor condensation and deposition rates in the model account for the large sensitivities in rainfall simulations.展开更多
Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been i...Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.展开更多
基金supported by National Nature Science Foundation of China(No.62171484)Zhuhai Fundamental and Application Research(No.ZH22017003210006PWC)Fundamental Research Funds for the Central Universities(No.21621420).
文摘Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power transfer(WPT)systems.Such beamforming schemes are classified as discrete and non-convex integer program-ming problems.In this paper,we propose a Monte-Carlo(MC)based random energy passive beamforming of RIS to achieve the maximum received power of electromagnetic(EM)WPT systems.Generally,the Gibbs sampling and re-sampling methods are employed to generate phase shift vector samples.And the sample with the maximum received power is considered the optimal solution.In order to adapt to the application scenarios,we develop two types of passive beamforming algorithms based on such MC sampling methods.The first passive beamforming uses an approximation of the integer programming as the initial sample,which is calculated based on the channel information.And the second one is a purely randomized algorithm with the only total received power feedback.The proposed methods present several advantages for RIS control,e.g.,fast convergence,easy implementation,robustness to the channel noise,and limited feedback requirement,and they are applicable even if the channel information is unknown.According to the simulation results,our proposed methods outperform other approxi-mation and genetic algorithms.With our methods,the WPT system even significantly improves the power effi-ciency in the nonline-of-sight(NLOS)environment.
基金the Natural Science Foundation of Shaanxi Province(No.2023-YBSF-086)Xi’an Science and Technology Plan Projects(No.21YXYJ0091)+1 种基金Key Projects of Shaanxi Provincial Department of Education(No.21JS041)Shaanxi Provincial People’s Hospital Science and Technology Talent Support Plan(No.2022BJ-05).
文摘Objective:To investigate the effect of auricular acupuncture on postoperative pain and gastrointestinal motility recovery after laparoscopic surgery for colorectal cancer.Methods:The clinical data of patients who underwent laparoscopic radical surgery for colorectal cancer in our hospital from April 2020 to December 2021 were collected.Based on the inclusion and exclusion criteria,76 patients were included in the retrospective analysis.Depending on whether they received auricular acupuncture or not,the patients were divided into two groups:46 patients in the experimental group(auricular acupuncture)and 30 patients in the control group.The differences between the two groups were analyzed.Results:The time to first flatus of the experimental group was significantly shorter than that of the control group(52.2±7.36 h versus 66.3±7.83 h;P<0.001).Similarly,the time to first defecation of the experimental group was significantly shorter than that of the control group(76.3±7.76 h versus 86.1±10.79 h;P<0.001).The time to first fluid intake of the auricular group was significantly shorter than that of the control group(90.4±8.92 h versus 107.3±9.66 h,P<0.001).Compared with the control group,the experimental group scored significantly lower on the visual analogue scale on postoperative days 2 and 3(P<0.001).Conclusion:Auricular acupuncture is an effective traditional Chinese medicine external treatment method.It can promote gastrointestinal motility recovery in patients after laparoscopic radical surgery for colorectal cancer and also reduce postoperative pain and discomfort.Furthermore,this therapy is easy to operate and well-accepted by patients.Therefore,it should be strongly promoted in clinical practice.
基金supported by the National Natural Science Foundation of China (Grant Nos.41730965, U2242204, and 41175047)the National Key Basic Research and Development Project of China (Grant No.2013CB430104)+2 种基金the Key Project of the Joint Funds of the Natural Science Foundation of Zhejiang Province (Grant No.LZJMZ23D050003financial support from the China Scholarship Council for her visit to CAPSUniversity of Oklahoma
文摘An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.
基金supported by the National Key Basic Research and Development Project of China (Grant No. 2009CB421505)the National Natural Sciences Foundation of China under Grant No. 40775031 and Grant No. GYHY200706020
文摘The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.
文摘Objective: To assess the safety and clinical antiangiogenic effect of recombinant adenovirus-p53 (rAd-p53) combined with hyperthermia plus or not plus radiotherapy in advanced cancer. Methods: Expression of Vascular epithelial growth factor (VEGF) after intratumoral injection of rAd-p53 was assayed by immunohistochemistry (IHC) imaging. Forty-four patients with advanced cancer were enrolled into this clinical study. The patients were intratumorally injected with rAd-p53 (Gendicine) at a dose of 1×1012 vp once a week, with a total of 4-54 (mean 7.7) times. Total of 4-29 (mean 8.5) times of hyperthermia was given to the patients. Among the 44 patients, 30 patients were concurrently added with radiotherapy of a total dose 30-76 Gy/15-38 f/3-8 w (mean 58 Gy). Results: Before and after intratumoral injection of rAd-p53, the VEGF IHC positive cell scores were 2.80 and 1.50, respectively (P=0.031). The treatment of rAd-p53 combined with hyperthermia plus or not plus radiotherapy in advanced cancer achieved CR rate of 13.60% (6/44), and PR rate of 29.6% (13/44), and thus the effective rate was 43.2%. In addition to 6 patients with CR, 19 patients (19/38, 50.0%) had low density area (LDA) of more than 50% area on CT image within tumor indicating tumor tissue necrosis. Conclusions: Our data indicate that rAd-p53 inhibits VEGF expression and angiogenesis, and promotes tumor necrosis and shrinkage induced by hyperthermia plus or not plus radiotherapy in advanced cancer.
基金supported by the State Key Basic Research Development Program (2004CB418300 and 2009CB421504)the National Natural Science Foundation of China under Grant Nos.40633016 and 40830958
文摘The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.
基金supported by the National Natural Science Foundation of China(Grants Nos.40875025,40875030,and 40775033)the Shanghai Natural Science Foundation of China(Grant No.08ZR1422900)
文摘Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6-8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with imposed zonally-uniform vertical velocity, zonal wind, horizontal temperature, and vapor advection from NCEP/Global Data Assimilation System (GDAS) data. The simulation data that are validated with observations are examined to study physical causes associated with surface rainfall processes during the landfall. The time- and domain-mean analysis shows that when Krosa approached the eastern coast of China on 6 October, the water vapor convergence over land caused a local atmospheric moistening and a net condensation that further produced surface rainfall and an increase of cloud hydrometeor concentration. Meanwhile, latent heating was balanced by advective cooling and a local atmospheric warming. One day later, the enhancement of net condensation led to an increase of surface rainfall and a local atmospheric drying, while the water vapor convergence weakened as a result of the landfall-induced deprivation of water vapor flux. At the same time, the latent heating is mainly compensated the advective cooling. Further weakening of vapor convergence on 8 October enhanced the local atmospheric drying while the net condensation and associated surface rainfall was maintained. The latent heating is balanced by advective cooling and a local atmospheric cooling.
基金jointly supported by the China Postdoctoral Science Foundation(No.2018M630028)the National Natural Science Foundation of China(Nos.41274094,40821062 and 40872133).
文摘Before the major earthquake or rock damage occurs,it is often accompanied by a sudden change in the degree of non-uniformity of the strain field.In order to find a stronger non-uniformity signal before the rock failure,the coefficient of variation(Cv)is examined and reformed in this study.We test the Cv calculation way of the"normal-abnormal"model proposed in the previous studies.Based on the analysis of the physical process of rock failure and its relationship to the shear strain field,we construct a new way to calculate the Cv value.The variation of shear strain field on rock sample with the increase of stress is obtained by the digital speckle correlation method(DSCM).The new Cv value calculation way is used to study the non-uniformity of the spatial distribution for the shear strain field.The results show that this Cv calculation way can get more obvious abnormal signals.When the number of observation points are limited,the specific distribution of points can increase the signal strength,which may provide reference for the research on precursor detection of earthquakes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42105004, 41930967, 42192554, and 42105011)the Natural Science Foundation of Zhejiang Province of China (Grant No. LQ20D050001)the Scientific Research Foundation of Hangzhou Normal University (Grant No. 2020QDL015)。
文摘Predecessor rain events(PREs) in the Yangtze River Delta(YRD) region associated with the South China Sea and Northwest Pacific Ocean(SCS-WNPO) tropical cyclones(TCs) are investigated during the period from 2010 to 2019.Results indicate that approximately 10% of TCs making landfall in China produce PREs over the YRD region;however,they are seldom forecasted. PREs often occur over the YRD region when TCs begin to be active in the SCS-WNPO with westward paths, whilst the cold air is still existing or beginning to be present. PREs are more likely to peak in June and September. The distances between the PRE centers and the parent TC range from 900 to 1700 km. The median value of rain amounts and the median lifetime of PREs is approximately 200 mm and 24 h, respectively. Composite results suggest that PREs form in the equatorward jet-entrance region of the upper-level westerly jet(WJ), where a 925-hPa equivalent potential temperature ridge is located east of a 500-hPa trough. Deep moisture is transported from the TC vicinity to the remote PREs region. The ascent of this deep moist air in front of the 500-hPa trough and frontogenesis beneath the equatorward entrance region of the WJ is advantageous for the occurrence of PREs in the YRD region. The upper-level WJ may be affected by the subtropical high and westerly trough in the Northwest Pacific Ocean, and the occurrence of PREs may favor the maintenance of the upper-level WJ. The upper-level outflow of TCs in the SCS plays a secondary role.
基金supported by the National Natural Science Foundation of China (Grant No. 41930967)
文摘In this study,Typhoon Rammasun(2014)was simulated using the Weather Research and Forecasting model to examine the kinetic energy during rapid intensification(RI).Budget analyses revealed that in the inner area of the typhoon,the conversion from symmetric divergent kinetic energy associated with the collocation of strong cyclonic circulation and inward flow led to an increase in the symmetric rotational kinetic energy in the lower troposphere.The increase in the symmetric rotational kinetic energy in the mid and upper troposphere resulted from the upward transport of symmetric rotational kinetic energy from the lower troposphere.In the outer area,both typhoon and Earth’s rotation played equally important roles in the conversion from symmetric divergent kinetic energy to symmetric rotational kinetic energy in the lower troposphere.The decrease in the symmetric rotational kinetic energy in the upper troposphere was caused by the conversion to asymmetric rotational kinetic energy through the collocation of symmetric tangential rotational winds and the radial advection of asymmetric tangential rotational winds by radial environmental winds.
基金This research was supported by the National Key R&D Program of China(Nos.2018YFC1504203 and SQ2017YFSF040025).
文摘Earthquakes result from continuous geodynamic processes.A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks.Therefore,in this study,uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting.The center of each marble plate(105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot(depth:2 mm,width:0.5 mm).The deformation and destruction processes of the rock surface were recorded using a high-speed camera.The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages.The accumulative and incremental displacement fields u and v,strain field exand e_(y),and shear strain e_(xy) were analyzed.When the loading level reached its ultimate value,the strain field was concentrated around the prefabricated slot.The concentration reached a maximum at the ends of the prefabricated slot.The magnitude of shear strain reached 0.1.This experiment contributes to our understanding of the dynamic process of active faulting.
基金supported by National Key R&D Program of China(2018YFA0901000,2022YFC2104800).
文摘In industrial fermentation processes,microorganisms often encounter acid stress,which significantly impact their productivity.This study focused on the acid-resistant module composed of small RNA(sRNA)DsrA and the sRNA chaperone Hfq.Our previous study had shown that this module improved the cell growth of Escherichia coli MG1655 at low pH,but failed to obtain this desired phenotype in industrial strains.Here,we performed a quantitative analysis of DsrA-Hfq module to determine the optimal expression mode.We then assessed the po-tential of the CymR-based negative auto-regulation(NAR)circuit for industrial application,under different media,strains and pH levels.Growth assay at pH 4.5 revealed that NAR-05D04H circuit was the best acid-resistant circuit to improve the cell growth of E.coli MG1655.This circuit was robust and worked well in the industrial lysine-producing strain E.coli SCEcL3 at a starting pH of 6.8 and without pH control,resulting in a 250%increase in lysine titer and comparable biomass in shaking flask fermentation compared to the parent strain.This study showed the practical application of NAR circuit in regulating DsrA-Hfq module,effectively and robustly improving the acid tolerance of industrial strains,which provides a new approach for breeding in-dustrial strains with tolerance phenotype.
基金supported by the National Natural Science Foundation of China (Grant No. 41475039)the National Key Basic Research and Development Project of China (Grant No. 2015CB953601)
文摘Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds,but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds.The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation.The increases(decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence(absence) of radiative effects of ice clouds,or the removal of radiative effects of ice clouds in the presence(absence) of radiative effects of water clouds,correspond mainly to the enhancements(reductions) in net condensation.The mean rain rate is a product of rain intensity and fractional rainfall coverage.The radiation-induced difference in the mean rain rate is related to the difference in rain intensity.The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.
基金supported by the National Key Basic Research and Development Project of China (Grant No. 2011CB403405)the National Natural Science Foundation of China (Grant Nos. 41075039 and 41175065)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘In this study, the effects of key ice microphysical processes on the pre-summer heavy rainfall over southern China during 3-8 June 2008 were investigated. A series of two-dimensional sensitivity cloud-resolving model simulations were forced with zonally uniform vertical velocity, zonal wind, horizontal temperature, and water vapor advection data from the National Centers for Environmental Prediction (NCEP)/Global Data Assimilation System (GDAS). The effects of key ice microphysical processes on the responses of rainfall to large-scale forcing were analyzed by comparing two sensitivity experiments with a control experiment. In one sensitivity experiment, ice crystal radius, associated with depositional growth of snow from cloud ice, was reduced from 100 #m in the control experiment to 50 #m, and in the other sensitivity experiment the efficiency of the growth of graupel from the accretion of snow was reduced to 50~ from 100% in the control experiment. The results show that the domain-mean rainfall responses to these ice microphysical processes are stronger during the decay phase than during the onset and mature phases. During the decay phase, the increased mean rain rate resulting from the decrease in ice crystal radius is associated with the enhanced mean local atmospheric drying, the increased mean local hydrometeor loss, and the suppressed mean water vapor divergence. The increased mean rain rate caused by the reduction in accretion efficiency is related to the reduced mean water vapor divergence and the enhanced mean local hydrometeor loss.
文摘Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed large-scale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convective- related processes and their ensemble effects on large-scale circulations. This review the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.
基金the topnotch innovative talents project and the project of Fujian Science and Technology Department(Grant 2016Y9025&2016J06018&2017I0004)Fujian Medical University teaching reform project(Y17005)Fujian Provincial Health and Family planning Commission Youth Research Project(2017-1-6)to LI.URL:http://kjt.fujian.gov.cn/。
文摘Most studies focus on the adaptive immune cells in the GVHD pathogenesis,while little is known about innate immune cells in GVHD occurrence and development,especially macrophages.Meanwhile,a higher incidence of graft versus host disease(GVHD)is also found in the elderly patients.Though advances have been made in the modification of macrophages influenced by the inflamm-ageing,there is still no review on the role of macrophages in GVHD and the association between GVHD and the altered macrophages by inflamm-ageing.In this review,we focus on the potential age-related modifications of macrophage in GVHD,which contributes to the change of morbidity and mortality of GVHD.Via literature review,we found that the infiltration of macrophages is associated with GVHD and macrophages are modified in inflamm-ageing state,including the proliferation,migration,phagocytosis,antigen presentation,interaction with other immune cells,and pro-fibrosis.We suppose that altered macrophage functions in inflamm-ageing state contribute to GVHD in elderly patients.
基金the National Key BasicResearch and Development Project of China under GrantNo. 2004CB418301the National Natural Sciences Foun-dation of China under Grant No. 40775031"Outstand-ing Oversea Scholars" Project No.2005-2-16.
文摘Impacts of initial conditions on cloud-resolving model simulations are investigated using a series of sensitivity experiments. Five experiments with perturbed initial temperature, moisture, and cloud conditions are conducted and compared to the control experiment. The model is forced by the large-scale vertical velocity and zonal wind observed and derived from NCEP/Global Data Assimilation System (GDAS). The results indicate that model predictions of rainfall are much more sensitive to the initial conditions than those of temperature and moisture. Further analyses of the surface rainfall equation and the moisture and cloud hydrometeor budgets reveal that the calculations of vapor condensation and deposition rates in the model account for the large sensitivities in rainfall simulations.
文摘Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.