期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Migration of ammonium nitrogen in ion-absorbed rare earth soils during and post in situ mining: a column study and numerical simulation analysis 被引量:1
1
作者 gaosheng Xi xiaojiang gao +6 位作者 Ming Zhou Xiangmei Zhai Ming Chen Xingxiang Wang Xiaoying Yang Zezhen Pan Zimeng Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第8期137-151,共15页
Ion-absorbed rare earth mines,leached in situ,retain a large amount of ammonium nitrogen(NH4–N)that continuously releases into the surrounding environments.However,quantitative descriptions and predictions of the tra... Ion-absorbed rare earth mines,leached in situ,retain a large amount of ammonium nitrogen(NH4–N)that continuously releases into the surrounding environments.However,quantitative descriptions and predictions of the transport of NH4–N across mining area with hill slopes are not fully established.Here,laboratory column experiments were designed with an inclined slope(a sand box)to examine the spatial temporal transport of NH4–N in soils collected from the ionic rare earth elements(REE)mining area.An HYDRUS-2D model simulation of the experimental data over time showed that soils had a strong adsorption capacity toward NH4–N.Chemical non-equilibrium model(CNEM)could well simulate the transport of NH4–N through the soil-packed columns.The simulation of the transport-adsorption processes at three flow rates of leaching agents revealed that low flow rate enabled a longer residence time and an increased NH4-N adsorption,but reduced the extraction efficiency for REE.During the subsequent rainwater washing process,the presence of slope resulted in the leaching of NH4–N on the surface of the slope,while the leaching of NH4–N deep inside the column was inhibited.Furthermore,the high-intensity rainfall significantly increased the leaching,highlighting the importance of considering the impact of extreme weather conditions during the leaching process.Overall,our study advances the understanding of the transport of NH4–N in mining area with hills,the impact of flow rates of leaching agents and precipitation intensities,and presents as a feasible modeling method to evaluate the environmental risks of NH4–N pollution during and post REE in situ mining activities. 展开更多
关键词 Ion-absorbed rare earth Ammonium nitrogen transport HYDRUS-2D Numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部