期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of alloy-like phase on energy loss mitigation in multi-component organic photovoltaics
1
作者 Xiangyue Kong Lingling Zhan +10 位作者 Zhongjie Li Yaxin Yang Yuhao Liu Huayu Qiu xiaokang sun Hanlin Hu Rui sun Jie Min Shouchun Yin Weifei Fu Hongzheng Chen 《Aggregate》 EI CAS 2024年第4期339-348,共10页
The multi-component strategy has proven effective in advancing the performance of organic photovoltaics(OPVs),enhancing photocurrent andfill factor through spectral complementarity and morphology optimization.However,t... The multi-component strategy has proven effective in advancing the performance of organic photovoltaics(OPVs),enhancing photocurrent andfill factor through spectral complementarity and morphology optimization.However,the open-circuit voltage(VOC)mechanism in multi-component systems lacks systematic investiga-tion.In this study,we explore the influence of alloy-like phases on energy level distribution and energy loss mechanisms in multi-component OPVs.Appropriate modulation of donor alloy-like phases maintains the original intermolecular stack-ing,enhances component compatibility,reduces acceptor aggregation,and improves acceptor phase purity,mitigating non-radiative recombination losses.Additionally,suitable alloy-like phase modulation elevates charge transfer(CT)states,reducing the gap between CT and local exciton state,lowering reorganization energy,and alleviating radiative recombination loss below the bandgap.Through synergistic optimization(layer-by-layer method with solid additive),ternary devices based on Y6 acceptor achieve a notable 19.41%power conversion efficiency,offering new insights for the analysis of the energy loss of the multi-component OPVs. 展开更多
关键词 alloy-like phase charge transfer state energy loss high efficiencies multi-donors
下载PDF
Phase separation and domain crystallinity control enable open-air-printable highly efficient and sustainable organic photovoltaics
2
作者 Jie Lv xiaokang sun +9 位作者 Hua Tang Fei Wang Guangye Zhang Liangxiang Zhu Jiaming Huang Qianguang Yang Shirong Lu Gang Li Frédéric Laquai Hanlin Hu 《InfoMat》 SCIE CSCD 2024年第3期131-143,共13页
Organic solar cells(OSCs)have emerged as a promising solution for sustainable energy production,offering advantages such as a low carbon footprint,short energy payback period,and compatibility with eco-solvents.Howeve... Organic solar cells(OSCs)have emerged as a promising solution for sustainable energy production,offering advantages such as a low carbon footprint,short energy payback period,and compatibility with eco-solvents.However,the use of hazardous solvents continues to dominate the best-performing OSCs,mainly because of the challenges of controlling phase separation and domain crystallinity in eco-solvents.In this study,we combined the solvent vapor treatment of CS2 and thermal annealing to precisely control the phase separation and domain crystallinity in PM6:M-Cl and PM6:O-Cl systems processed with the eco-solvent o-xylene.This method resulted in a maximum power conversion efficiency(PCE)of 18.4%,which is among the highest values reported for sustainable binary OSCs.Furthermore,the fabrication techniques were transferred from spin coating in a nitrogen environment to blade printing in ambient air,retaining a PCE of 16.0%,showing its potential for high-throughput and scalable production.In addition,a comparative analysis of OSCs processed with hazardous and green solvents was conducted to reveal the differences in phase aggregation.This work not only underscores the significance of sustainability in OSCs but also lays the groundwork for unlocking the full potential of open-air-printable sustainable OSCs for commercialization. 展开更多
关键词 open-air printable organic solar cells SUSTAINABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部