期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
厚热障涂层的失效分析研究
1
作者 郑南松 姬小兰 +2 位作者 张志远 张远应 郭建云 《热喷涂技术》 2020年第4期69-73,82,共6页
厚热障涂层因具有优异的隔热效果,在航空发动机热端部件防护上获得应用。在高温燃气冲蚀环境中服役后,致密厚热障涂层呈局部块状剥落而失效。本文对涂层失效后的截面形貌、元素分布、相结构等进行分析。结果表明,涂层失效的主要原因是... 厚热障涂层因具有优异的隔热效果,在航空发动机热端部件防护上获得应用。在高温燃气冲蚀环境中服役后,致密厚热障涂层呈局部块状剥落而失效。本文对涂层失效后的截面形貌、元素分布、相结构等进行分析。结果表明,涂层失效的主要原因是表面附着物的渗入和焰流冲蚀下致密厚热障涂层内部应力的增加。采用高能等离子喷涂制备具有弥散分布裂纹的厚热障涂层有望提高涂层寿命。 展开更多
关键词 厚热障涂层 冲蚀 失效 高能等离子
下载PDF
High-entropy ferroelastic(10RE_(0.1))TaO_(4) ceramics with oxygen vacancies and improved thermophysical properties 被引量:9
2
作者 Jun Wang Xiaoyu Chong +4 位作者 Liang Lv Yuncheng Wang xiaolan ji Haitao Yun jing Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第26期98-106,共9页
The primary purpose of this work is to optimize the thermophysical properties of rare-earth tan-talate ceramics using the high-entropy effect.Here,the high-entropy rare-earth tantalate ceramic(Y_(0.1)Nd_(0.1)Sm_(0.1)G... The primary purpose of this work is to optimize the thermophysical properties of rare-earth tan-talate ceramics using the high-entropy effect.Here,the high-entropy rare-earth tantalate ceramic(Y_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Dy_(0.1)Ho_(0.1)Er_(0.1)Tm_(0.1)Yb_(0.1)Lu_(0.1))TaO_(4)((10RE_(0.1))TaO_(4))is synthesized successfully.The lat-tice distortion and oxygen vacancy concentration are characterized firstly in the rare-earth tantalates.Notably,compared with single rare-earth tantalates,the thermal conductivity of(10RE_(0.1))TaO_(4) is reduced by 16%-45%at 100℃ and 22%-45%at 800℃,and it also presents lower phonon thermal conductivity in the entire temperature range from 100 to 1200℃.The phonon thermal conductivity(1.0-2.2 W m^(-1) K^(-1),100-1200℃)of(10RE_(0.1))TaO_(4) is lower than that of the currently reported high-entropy four-,five-and six-component rare-earth tantalates.This is the result of scattering by the ferroelastic domain,lattice distortion associated with size and mass disorder,and point defects,which target low-,mid-and high-frequency phonons.Furthermore,(10RE_(0.1))TaO_(4),as an improved candidate for thermal barrier coatings materials(TBCs),has a higher thermal expansion coefficient(10.5×10^(-6)K^(-1) at 1400℃),lower Young’s modulus(123 GPa)and better high-temperature phase stability than that of single rare-earth tantalates. 展开更多
关键词 High-entropy rare-earth tantalate ceramic Ferroelastic domain Lattice distortion Oxygen vacancy Thermal conductivity Thermal barrier coatings materials
原文传递
Low thermal conductivity and anisotropic thermal expansion of ferroelastic(Gd_(1−x)Y_(x))TaO_(4) ceramics 被引量:4
3
作者 Chenkai QU Lin CHEN +5 位作者 Liang LV Yuncheng WANG xiaolan ji Haitao YUN Chaoqun SU jing FENG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第11期1696-1713,共18页
In this paper,(Gd_(1−x)Y_(x))TaO_(4) ceramics have been fabricated by solid-phase synthesis reaction.Each sample was found to crystallize in a monoclinic phase by X-ray diffraction(XRD).The properties of(Gd_(1−x)Y_(x)... In this paper,(Gd_(1−x)Y_(x))TaO_(4) ceramics have been fabricated by solid-phase synthesis reaction.Each sample was found to crystallize in a monoclinic phase by X-ray diffraction(XRD).The properties of(Gd_(1−x)Y_(x))TaO_(4) were optimized by adjusting the ratio of Gd/Y.(Gd_(1−x)Y_(x))TaO_(4) had a low high-temperature thermal conductivity(1.37–2.05 W·m^(−1)·K^(−1)),which was regulated by lattice imperfections.The phase transition temperature of the(Gd_(1−x)Y_(x))TaO_(4) ceramics was higher than 1500℃.Moreover,the linear thermal expansion coefficients(TECs)were 10.5×10^(−6) K^(−1)(1200℃),which was not inferior to yttria-stabilized zirconia(YSZ)(11×10^(−6) K^(−1),1200℃).(Gd_(1−x)Y_(x))TaO_(4) had anisotropic thermal expansion.Therefore,controlling preferred orientation could minimize the TEC mismatch when(Gd_(1−x)Y_(x))TaO_(4) coatings were deposited on different substrates as thermal barrier coatings(TBCs).Based on their excellent properties,it is believed that the(Gd_(1−x)Y_(x))TaO_(4) ceramics will become the next generation of high-temperature thermal protective coatings. 展开更多
关键词 thermal barrier coatings(TBCs) thermal conductivity high-temperature phase stability high-temperature X-ray diffraction(XRD) anisotropic thermal expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部