The primary purpose of this work is to optimize the thermophysical properties of rare-earth tan-talate ceramics using the high-entropy effect.Here,the high-entropy rare-earth tantalate ceramic(Y_(0.1)Nd_(0.1)Sm_(0.1)G...The primary purpose of this work is to optimize the thermophysical properties of rare-earth tan-talate ceramics using the high-entropy effect.Here,the high-entropy rare-earth tantalate ceramic(Y_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Dy_(0.1)Ho_(0.1)Er_(0.1)Tm_(0.1)Yb_(0.1)Lu_(0.1))TaO_(4)((10RE_(0.1))TaO_(4))is synthesized successfully.The lat-tice distortion and oxygen vacancy concentration are characterized firstly in the rare-earth tantalates.Notably,compared with single rare-earth tantalates,the thermal conductivity of(10RE_(0.1))TaO_(4) is reduced by 16%-45%at 100℃ and 22%-45%at 800℃,and it also presents lower phonon thermal conductivity in the entire temperature range from 100 to 1200℃.The phonon thermal conductivity(1.0-2.2 W m^(-1) K^(-1),100-1200℃)of(10RE_(0.1))TaO_(4) is lower than that of the currently reported high-entropy four-,five-and six-component rare-earth tantalates.This is the result of scattering by the ferroelastic domain,lattice distortion associated with size and mass disorder,and point defects,which target low-,mid-and high-frequency phonons.Furthermore,(10RE_(0.1))TaO_(4),as an improved candidate for thermal barrier coatings materials(TBCs),has a higher thermal expansion coefficient(10.5×10^(-6)K^(-1) at 1400℃),lower Young’s modulus(123 GPa)and better high-temperature phase stability than that of single rare-earth tantalates.展开更多
In this paper,(Gd_(1−x)Y_(x))TaO_(4) ceramics have been fabricated by solid-phase synthesis reaction.Each sample was found to crystallize in a monoclinic phase by X-ray diffraction(XRD).The properties of(Gd_(1−x)Y_(x)...In this paper,(Gd_(1−x)Y_(x))TaO_(4) ceramics have been fabricated by solid-phase synthesis reaction.Each sample was found to crystallize in a monoclinic phase by X-ray diffraction(XRD).The properties of(Gd_(1−x)Y_(x))TaO_(4) were optimized by adjusting the ratio of Gd/Y.(Gd_(1−x)Y_(x))TaO_(4) had a low high-temperature thermal conductivity(1.37–2.05 W·m^(−1)·K^(−1)),which was regulated by lattice imperfections.The phase transition temperature of the(Gd_(1−x)Y_(x))TaO_(4) ceramics was higher than 1500℃.Moreover,the linear thermal expansion coefficients(TECs)were 10.5×10^(−6) K^(−1)(1200℃),which was not inferior to yttria-stabilized zirconia(YSZ)(11×10^(−6) K^(−1),1200℃).(Gd_(1−x)Y_(x))TaO_(4) had anisotropic thermal expansion.Therefore,controlling preferred orientation could minimize the TEC mismatch when(Gd_(1−x)Y_(x))TaO_(4) coatings were deposited on different substrates as thermal barrier coatings(TBCs).Based on their excellent properties,it is believed that the(Gd_(1−x)Y_(x))TaO_(4) ceramics will become the next generation of high-temperature thermal protective coatings.展开更多
基金financially supported by the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(Nos.202102AB080019-1 and 202002AB080001-1)the Yun-nan Fundamental Research Projects(Nos.202101AW070011 and 202101BE070001-015).
文摘The primary purpose of this work is to optimize the thermophysical properties of rare-earth tan-talate ceramics using the high-entropy effect.Here,the high-entropy rare-earth tantalate ceramic(Y_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Dy_(0.1)Ho_(0.1)Er_(0.1)Tm_(0.1)Yb_(0.1)Lu_(0.1))TaO_(4)((10RE_(0.1))TaO_(4))is synthesized successfully.The lat-tice distortion and oxygen vacancy concentration are characterized firstly in the rare-earth tantalates.Notably,compared with single rare-earth tantalates,the thermal conductivity of(10RE_(0.1))TaO_(4) is reduced by 16%-45%at 100℃ and 22%-45%at 800℃,and it also presents lower phonon thermal conductivity in the entire temperature range from 100 to 1200℃.The phonon thermal conductivity(1.0-2.2 W m^(-1) K^(-1),100-1200℃)of(10RE_(0.1))TaO_(4) is lower than that of the currently reported high-entropy four-,five-and six-component rare-earth tantalates.This is the result of scattering by the ferroelastic domain,lattice distortion associated with size and mass disorder,and point defects,which target low-,mid-and high-frequency phonons.Furthermore,(10RE_(0.1))TaO_(4),as an improved candidate for thermal barrier coatings materials(TBCs),has a higher thermal expansion coefficient(10.5×10^(-6)K^(-1) at 1400℃),lower Young’s modulus(123 GPa)and better high-temperature phase stability than that of single rare-earth tantalates.
基金supported by the National Natural Science Foundation of China(No.91960103)the Yunnan Province Science Fund for Distinguished Young Scholars(No.2019FJ006)Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(No.202102AB080019-1).
文摘In this paper,(Gd_(1−x)Y_(x))TaO_(4) ceramics have been fabricated by solid-phase synthesis reaction.Each sample was found to crystallize in a monoclinic phase by X-ray diffraction(XRD).The properties of(Gd_(1−x)Y_(x))TaO_(4) were optimized by adjusting the ratio of Gd/Y.(Gd_(1−x)Y_(x))TaO_(4) had a low high-temperature thermal conductivity(1.37–2.05 W·m^(−1)·K^(−1)),which was regulated by lattice imperfections.The phase transition temperature of the(Gd_(1−x)Y_(x))TaO_(4) ceramics was higher than 1500℃.Moreover,the linear thermal expansion coefficients(TECs)were 10.5×10^(−6) K^(−1)(1200℃),which was not inferior to yttria-stabilized zirconia(YSZ)(11×10^(−6) K^(−1),1200℃).(Gd_(1−x)Y_(x))TaO_(4) had anisotropic thermal expansion.Therefore,controlling preferred orientation could minimize the TEC mismatch when(Gd_(1−x)Y_(x))TaO_(4) coatings were deposited on different substrates as thermal barrier coatings(TBCs).Based on their excellent properties,it is believed that the(Gd_(1−x)Y_(x))TaO_(4) ceramics will become the next generation of high-temperature thermal protective coatings.