Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism ...Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats.The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane,with histological score decreasing from 3.12±0.27 to 2.20±0.22 and anti-adhesion effectiveness increasing from 21.61%to 44.72%.Mechanistically,the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively;thus,the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited.Consequently,excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-α(TNF-α)is largely reduced.For biocompatibility evaluation,PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes.Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds,which further delays the fibrosis process.It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.展开更多
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop...Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.展开更多
This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2...This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.展开更多
The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.I...The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.展开更多
Photocatalytic degradation attracts considerable attention because it is a promising strategy to treat pollutants from industrial and agricultural wastes. In recent years, other than the development of e cient photoca...Photocatalytic degradation attracts considerable attention because it is a promising strategy to treat pollutants from industrial and agricultural wastes. In recent years, other than the development of e cient photocatalysts, much e ort has been devoted to the design of reliable and inexpensive photocatalytic platforms that work in various environment conditions. Here, we describe a novel photocatalytic platform that is able to float and freely move atop water while performing photodegradation. Compared to common platforms, such as slurry reactors and immobilized photoreactors, the proposed platform is advantageous in terms of easy recycling and energy saving. Furthermore, the special configuration resulting from a two-step synthesis route, semi-embedded photocatalysts, addresses some of the remaining challenges, for instance, the contamination from the loose photocatalysts themselves. For the probe pollutant, methylene blue(MB), a reproducible and remarkable degradation activity of the platform, is observed and the e ect of two primary factors, including surface area of the catalyst and mass transfer rate, is investigated. Besides, the piezo-photocatalysis e ect, serving as an additional functionality, is confirmed to further improve the degradability of the platform, which o ers an additional 20% of degraded MB. At last, the promising result of the degradation toward crude oil reveals the possibility of the platform to be used in gasoline pollution treatment.展开更多
The paper presents structure-oriented Register Transfer Level (RTL) test generation algorithm, which hierarchically tests large-scale circuits. It generates tests for low-level circuit with gate-level test generation ...The paper presents structure-oriented Register Transfer Level (RTL) test generation algorithm, which hierarchically tests large-scale circuits. It generates tests for low-level circuit with gate-level test generation technology, and generates tests for high-level circuit with combining module test sets. It also presents a new fault-simulation algorithm at RT level circuit to adapt test generation hierarchically.展开更多
Xinjiang, China is affected by geographical terrain and other factors, and is prone to lightning disasters. In order to effectively carry out lightning protection and disaster reduction work and improve defense capabi...Xinjiang, China is affected by geographical terrain and other factors, and is prone to lightning disasters. In order to effectively carry out lightning protection and disaster reduction work and improve defense capabilities, based on the data of lightning location monitoring in Xinjiang in 2017 and the statistics reports of the lightning disasters from 2015 to 2017, the characteristics of the cloud-to-ground (CG) lightning activities and disasters in Xinjiang were statistically analyzed. The results show that the CG lightning in Xinjiang is mainly the negative one, accounting for 79.7% of the total lightning. In 2017, the distribution of positive, negative and total the CG lightning months mainly focuses on June to August, and the main occurrence period is from 14 to 23 hours. The intensity of total the CG lightning and negative the CG lightning mainly distributes from 20 to 40 kA, and the peak value appears in 30 kA. The CG lightning intensity is mainly distributed in 30 - 70 kA. The distribution of the CG lightning density in Xinjiang is larger in the north than in the south and larger in the west than in the east. Lightning disasters mainly occur from May to August, accounting for 93.2 percent of the total, with the largest number in June. From 2005 to 2017, 44.6% of lightning accidents occurred in farming and pastoral areas, followed by civil electronic equipment damage. In addition, electrical equipment, buildings and factory equipment are damaged by lightning strikes to varying degrees.展开更多
Two-dimensional(2D)gas chromatography(GC)provides enhanced vapor separation capabilities in contrast to conventional one-dimensional GC and is useful for the analysis of highly complex chemical samples.We developed a ...Two-dimensional(2D)gas chromatography(GC)provides enhanced vapor separation capabilities in contrast to conventional one-dimensional GC and is useful for the analysis of highly complex chemical samples.We developed a microfabricated flow-restricted pneumatic modulator(FRPM)for portable comprehensive 2D micro-GC(μGC),which enables rapid ^(2)D injection and separation without compromising the ^(1)D separation speed and eluent peak profiles.^(2)D injection characteristics such as injection peak width and peak height were fully characterized by using flow-through micro-photoionization detectors(μPIDs)at the FRPM inlet and outlet.A ^(2)D injection peak width of~25 ms could be achieved with a ^(2)D/^(1)D flow rate ratio over 10.The FRPM was further integrated with a 0.5-m long ^(2)D μcolumn on the same chip,and its performance was characterized.Finally,we developed an automated portable comprehensive 2D μGC consisting of a 10m OV-11D μcolumn,an integrated FRPM with a built-in 0.5m polyethylene glycol ^(2)D μcolumn,and two μPIDs.Rapid separation of 40 volatile organic compounds in~5 min was demonstrated.A hybrid 2D contour plot was constructed by using both ^(1)D and ^(2)D chromatograms obtained with the two μPIDs at the end of the ^(1)D and ^(2)D μcolumns,which was enabled by the presence of the flow resistor in the FRPM.展开更多
基金supported by the National Natural Science Foundation of China(No.82172408,81772314,and 81922045)the Original Exploration project(22ZR1480300)+5 种基金Outstanding Academic Leaders(Youth)project(21XD1422900)of Shanghai Science and Technology Innovation Action PlanPrinciple Investigator Innovation Team of Both Shanghai Sixth People’s Hospital and Shanghai Institute of Nutrition and Health,Shanghai Jiao Tong University Medical College“Two-hundred Talent”Program(No.20191829)The Second Three-Year Action Plan for Promoting Clinical Skills and Clinical Innovation in Municipal Hospitals of Shanghai Shenkang(No.SHDC2020CR4032)Shanghai Excellent Academic Leader ProgramShanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration(No.20DZ2254100)China Postdoctoral Science Foundation(2023M742347).
文摘Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats.The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane,with histological score decreasing from 3.12±0.27 to 2.20±0.22 and anti-adhesion effectiveness increasing from 21.61%to 44.72%.Mechanistically,the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively;thus,the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited.Consequently,excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-α(TNF-α)is largely reduced.For biocompatibility evaluation,PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes.Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds,which further delays the fibrosis process.It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.
基金supported by the National Key Research and Development Program of China(2022YFB3205500)the National Natural Science Foundation of China(62371299,62301314 and 62101329)+2 种基金the China Postdoctoral Science Foundation(2023M732198)the Natural Science Foundation of Shanghai(23ZR1430100)supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.
文摘Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.
基金The National Natural Science Foundation of China under contract Nos 42275024 and 42105040the Key R&D Program of China under contract No.2022YFE0203500+3 种基金the Guangdong Basic and Applied Basic Research Foundation under contract Nos 2023B1515020009 and 2024B1515040024the Youth Innovation Promotion Association CAS under contract No.2020340the Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences under contract No.SCSIO2023QY01the Science and Technology Planning Project of Guangzhou under contract No.2024A04J6275.
文摘This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.
基金funding support from National Natural Science Foundation of China(Project No.61574091)Wuxi River and Lake Management and Water Resources Management Center(Project No.JSXXCG2022-004).
文摘The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.
文摘Photocatalytic degradation attracts considerable attention because it is a promising strategy to treat pollutants from industrial and agricultural wastes. In recent years, other than the development of e cient photocatalysts, much e ort has been devoted to the design of reliable and inexpensive photocatalytic platforms that work in various environment conditions. Here, we describe a novel photocatalytic platform that is able to float and freely move atop water while performing photodegradation. Compared to common platforms, such as slurry reactors and immobilized photoreactors, the proposed platform is advantageous in terms of easy recycling and energy saving. Furthermore, the special configuration resulting from a two-step synthesis route, semi-embedded photocatalysts, addresses some of the remaining challenges, for instance, the contamination from the loose photocatalysts themselves. For the probe pollutant, methylene blue(MB), a reproducible and remarkable degradation activity of the platform, is observed and the e ect of two primary factors, including surface area of the catalyst and mass transfer rate, is investigated. Besides, the piezo-photocatalysis e ect, serving as an additional functionality, is confirmed to further improve the degradability of the platform, which o ers an additional 20% of degraded MB. At last, the promising result of the degradation toward crude oil reveals the possibility of the platform to be used in gasoline pollution treatment.
基金supported by National Natural Science Foundation of China under the grant No.69733010,69973016
文摘The paper presents structure-oriented Register Transfer Level (RTL) test generation algorithm, which hierarchically tests large-scale circuits. It generates tests for low-level circuit with gate-level test generation technology, and generates tests for high-level circuit with combining module test sets. It also presents a new fault-simulation algorithm at RT level circuit to adapt test generation hierarchically.
文摘Xinjiang, China is affected by geographical terrain and other factors, and is prone to lightning disasters. In order to effectively carry out lightning protection and disaster reduction work and improve defense capabilities, based on the data of lightning location monitoring in Xinjiang in 2017 and the statistics reports of the lightning disasters from 2015 to 2017, the characteristics of the cloud-to-ground (CG) lightning activities and disasters in Xinjiang were statistically analyzed. The results show that the CG lightning in Xinjiang is mainly the negative one, accounting for 79.7% of the total lightning. In 2017, the distribution of positive, negative and total the CG lightning months mainly focuses on June to August, and the main occurrence period is from 14 to 23 hours. The intensity of total the CG lightning and negative the CG lightning mainly distributes from 20 to 40 kA, and the peak value appears in 30 kA. The CG lightning intensity is mainly distributed in 30 - 70 kA. The distribution of the CG lightning density in Xinjiang is larger in the north than in the south and larger in the west than in the east. Lightning disasters mainly occur from May to August, accounting for 93.2 percent of the total, with the largest number in June. From 2005 to 2017, 44.6% of lightning accidents occurred in farming and pastoral areas, followed by civil electronic equipment damage. In addition, electrical equipment, buildings and factory equipment are damaged by lightning strikes to varying degrees.
基金The authors acknowledge the support from the National Institute for Occupational Safety and Health(NIOSH)via R01OH011082-01A1 and the Office of the Directorof National Intelligence(ODNI),Intelligence Advanced Research Projects Activity(IARPA),via IARPAFA8650-19-C-9101,andt he National Institutes of Health via U18TRo03812.
文摘Two-dimensional(2D)gas chromatography(GC)provides enhanced vapor separation capabilities in contrast to conventional one-dimensional GC and is useful for the analysis of highly complex chemical samples.We developed a microfabricated flow-restricted pneumatic modulator(FRPM)for portable comprehensive 2D micro-GC(μGC),which enables rapid ^(2)D injection and separation without compromising the ^(1)D separation speed and eluent peak profiles.^(2)D injection characteristics such as injection peak width and peak height were fully characterized by using flow-through micro-photoionization detectors(μPIDs)at the FRPM inlet and outlet.A ^(2)D injection peak width of~25 ms could be achieved with a ^(2)D/^(1)D flow rate ratio over 10.The FRPM was further integrated with a 0.5-m long ^(2)D μcolumn on the same chip,and its performance was characterized.Finally,we developed an automated portable comprehensive 2D μGC consisting of a 10m OV-11D μcolumn,an integrated FRPM with a built-in 0.5m polyethylene glycol ^(2)D μcolumn,and two μPIDs.Rapid separation of 40 volatile organic compounds in~5 min was demonstrated.A hybrid 2D contour plot was constructed by using both ^(1)D and ^(2)D chromatograms obtained with the two μPIDs at the end of the ^(1)D and ^(2)D μcolumns,which was enabled by the presence of the flow resistor in the FRPM.