BiFeO_(3)–BaTiO_(3)(BF–BT)based piezoelectric ceramics are a kind of high-temperature lead-free piezoelectric ceramics with great development prospects due to their high Curie temperature(TC)and excellent electrical...BiFeO_(3)–BaTiO_(3)(BF–BT)based piezoelectric ceramics are a kind of high-temperature lead-free piezoelectric ceramics with great development prospects due to their high Curie temperature(TC)and excellent electrical properties.However,large leakage current limits their performance improvement and practical applications.In this work,direct current(DC)test,alternating current(AC)impedance,and Hall tests were used to investigate conduction mechanisms of 0.75BiFeO_(3)–0.25BaTiO_(3)ceramics over a wide temperature range.In the range of room temperature(RT)−150℃,ohmic conduction plays a predominant effect,and the main carriers are p-type holes with the activation energy(Ea)of 0.51 eV.When T>200℃,the Ea value calculated from the AC impedance and Hall data is 1.03 eV with oxygen vacancies as a cause of high conductivity.The diffusion behavior of thermally activated oxygen vacancies is affected by crystal symmetry,oxygen vacancy concentration,and distribution,dominating internal conduction mechanism.Deciphering the conduction mechanisms over the three temperature ranges would pave the way for further improving the insulation and electrical properties of BiFeO_(3)–BaTiO_(3)ceramics.展开更多
As a crucial biophysical property,red blood cell(RBC)deformability is pathologically altered in numerous disease states,and biochemical and structural changes occur over time in stored samples of otherwise normal RBCs...As a crucial biophysical property,red blood cell(RBC)deformability is pathologically altered in numerous disease states,and biochemical and structural changes occur over time in stored samples of otherwise normal RBCs.However,there is still a gap in applying it further to point-of-care blood devices due to the large external equipment(high-resolution microscope and microfluidic pump),associated operational difficulties,and professional analysis.Herein,we revolutionarily propose a smart optofluidic system to provide a differential diagnosis for blood testing via precise cell biophysics property recognition both mechanically and morphologically.Deformation of the RBC population is caused by pressing the hydrogel via an integrated mechanical transfer device.The biophysical properties of the cell population are obtained by the designed smartphone algorithm.Artificial intelligence-based modeling of cell biophysics properties related to blood diseases and quality was developed for online testing.We currently achieve 100%diagnostic accuracy for five typical clinical blood diseases(90 megaloblastic anemia,78 myelofibrosis,84 iron deficiency anemia,48 thrombotic thrombocytopenic purpura,and 48 thalassemias)via real-world prospective implementation;furthermore,personalized blood quality(for transfusion in cardiac surgery)monitoring is achieved with an accuracy of 96.9%.This work suggests a potential basis for next-generation blood smart health care devices.展开更多
Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification ...Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane.p.rodu. ction lines, possesses an advantag, eous viability in practical applications.However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively.The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed thepresence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200% w/w) achieved a significantly increased blending efficiency with more NPs scattenng on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52072028,52032007)National Key R&D Program of China(No.2022YFB3807400).
文摘BiFeO_(3)–BaTiO_(3)(BF–BT)based piezoelectric ceramics are a kind of high-temperature lead-free piezoelectric ceramics with great development prospects due to their high Curie temperature(TC)and excellent electrical properties.However,large leakage current limits their performance improvement and practical applications.In this work,direct current(DC)test,alternating current(AC)impedance,and Hall tests were used to investigate conduction mechanisms of 0.75BiFeO_(3)–0.25BaTiO_(3)ceramics over a wide temperature range.In the range of room temperature(RT)−150℃,ohmic conduction plays a predominant effect,and the main carriers are p-type holes with the activation energy(Ea)of 0.51 eV.When T>200℃,the Ea value calculated from the AC impedance and Hall data is 1.03 eV with oxygen vacancies as a cause of high conductivity.The diffusion behavior of thermally activated oxygen vacancies is affected by crystal symmetry,oxygen vacancy concentration,and distribution,dominating internal conduction mechanism.Deciphering the conduction mechanisms over the three temperature ranges would pave the way for further improving the insulation and electrical properties of BiFeO_(3)–BaTiO_(3)ceramics.
基金This work was supported by the National Key R&D Program of China(2018YFC1003200)the National Natural Science Foundation of China(Nos.62175190,11774274,81860276,and 81770179)+1 种基金Foundation Research Fund of Shenzhen Science and Technology Program(No.JCYJ20190808154409678)Support Projects of Medical Science and Technology Innovation Platform of Wuhan University Zhongnan Hospital in 2020(lcyf202010).
文摘As a crucial biophysical property,red blood cell(RBC)deformability is pathologically altered in numerous disease states,and biochemical and structural changes occur over time in stored samples of otherwise normal RBCs.However,there is still a gap in applying it further to point-of-care blood devices due to the large external equipment(high-resolution microscope and microfluidic pump),associated operational difficulties,and professional analysis.Herein,we revolutionarily propose a smart optofluidic system to provide a differential diagnosis for blood testing via precise cell biophysics property recognition both mechanically and morphologically.Deformation of the RBC population is caused by pressing the hydrogel via an integrated mechanical transfer device.The biophysical properties of the cell population are obtained by the designed smartphone algorithm.Artificial intelligence-based modeling of cell biophysics properties related to blood diseases and quality was developed for online testing.We currently achieve 100%diagnostic accuracy for five typical clinical blood diseases(90 megaloblastic anemia,78 myelofibrosis,84 iron deficiency anemia,48 thrombotic thrombocytopenic purpura,and 48 thalassemias)via real-world prospective implementation;furthermore,personalized blood quality(for transfusion in cardiac surgery)monitoring is achieved with an accuracy of 96.9%.This work suggests a potential basis for next-generation blood smart health care devices.
文摘Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane.p.rodu. ction lines, possesses an advantag, eous viability in practical applications.However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively.The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed thepresence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200% w/w) achieved a significantly increased blending efficiency with more NPs scattenng on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types.