Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study ...Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study these issues for medical chip design, drug development, health care, etc. In this investigation, the conductivity properties of λ-DNA solutions with mono-/divalent metal ions(Na+, K^(+), Mg^(2+), and Ca^(2+)) are experimentally studied as they are electrically driven through a 5 μm microfluidic channel. Experimental data indicate that the conductivities of λ-DNA solutions with metal ions(M+/M2+) basically tend to reduce firstly and then increase as the voltage increases, of which the turning points varied with the metal ions. When the voltage surpasses turning points, the conductivity of λ-DNA-M+solutions increases with the concentration of metal ions, while that of λ-DNA-M^(2+)solutions decrease. Moreover, the conductivity of λ-DNA-M^(2+)solutions is always smaller than that of λ-DNA-M+solutions, and with high-concentration M^(2+), it is even smaller than that of the λ-DNA solution. The main reasons for the above findings could be attributed to the polarization of electrodes and different mechanisms of interactions between metal ions and λ-DNA molecules. This investigation is helpful for the precise manipulation of single DNA molecules in micro-/nanofluidic space and the design of new biomedical micro-/nanofluidic sensors.展开更多
Highly sensitive and uniform three-dimensional(3D)hybrid heterogeneous structures for use in surface-enhanced Raman scattering(SERS)experiments were fabricated by sequentially decorating high-quality,ultra-clean,graph...Highly sensitive and uniform three-dimensional(3D)hybrid heterogeneous structures for use in surface-enhanced Raman scattering(SERS)experiments were fabricated by sequentially decorating high-quality,ultra-clean,graphene quantum dots(GQDs)and Ag nanoparticles(Ag-NPs)onto 3D-graphene.Finite-difference time-domain calculations and scanning Kelvin probe microscopy were used to verify that the Ag-NPs/GQDs/3D-graphene system facilitates substantial electromagnetic enhancement(due to the occurrence of two kinds of"gaps"between the Ag-NPs that form 3D"hot spots")and additional chemical enhancement(in detecting someπ-conjugated molecules).The SERS mechanism was explored in further detail via experimental analysis and confirmed by performing theoretical calculations.The large surface area of the 3D substrate(due to the large specific surface areas of the GQDs and 3D-graphene)results in a better enrichment effect which helps produce lower detection limits.In particular,the detection limits obtained using the Ag-NPs/GQDs/3D-graphene platform can reach 10^(-11)M for rhodamine 6G,10^(-10)M for methylene blue and dopamine,and 10^(-7)M for tetramethylthiuram disulfide and methyl parathion in apple juice(these are superior to most of the results reported using graphene-based SERS substrates).In summary,the 3D-platform Ag-NPs/GQDs/3D-graphene/Si shows outstanding SERS performance.It therefore has excellent application prospects in biochemical molecular detection and food safety monitoring.展开更多
In this Letter, we demonstrated the switchable single-and dual-wavelength femtosecond soliton generation in single-mode Er-doped fiber lasers with the usage of carboxyl-functionalized graphene oxide(GO-COOH) saturable...In this Letter, we demonstrated the switchable single-and dual-wavelength femtosecond soliton generation in single-mode Er-doped fiber lasers with the usage of carboxyl-functionalized graphene oxide(GO-COOH) saturable absorbers(SAs) for the first time, to the best of our knowledge. The fiber laser generated a stable single-wavelength conventional soliton at 1560.1 nm with a pulse duration of 548.1 fs. The dual-wavelength solitons centered at 1531.9 nm and 1555.2 nm with a spacing of approximately 23 nm can be obtained by adjusting the pump power of the cavity. Our experimental results indicated the GO-COOH has great potential to be used in ultrafast fiber lasers as broadband SAs.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62275216 and 61775181)the Innovation Capability Support Program of Shaanxi Province of China (Grant Nos. S2018-ZC-TD-0061 and TZ0393)the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 51927804)。
文摘Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study these issues for medical chip design, drug development, health care, etc. In this investigation, the conductivity properties of λ-DNA solutions with mono-/divalent metal ions(Na+, K^(+), Mg^(2+), and Ca^(2+)) are experimentally studied as they are electrically driven through a 5 μm microfluidic channel. Experimental data indicate that the conductivities of λ-DNA solutions with metal ions(M+/M2+) basically tend to reduce firstly and then increase as the voltage increases, of which the turning points varied with the metal ions. When the voltage surpasses turning points, the conductivity of λ-DNA-M+solutions increases with the concentration of metal ions, while that of λ-DNA-M^(2+)solutions decrease. Moreover, the conductivity of λ-DNA-M^(2+)solutions is always smaller than that of λ-DNA-M+solutions, and with high-concentration M^(2+), it is even smaller than that of the λ-DNA solution. The main reasons for the above findings could be attributed to the polarization of electrodes and different mechanisms of interactions between metal ions and λ-DNA molecules. This investigation is helpful for the precise manipulation of single DNA molecules in micro-/nanofluidic space and the design of new biomedical micro-/nanofluidic sensors.
基金support provided by the National Natural Science Foundation of China under Grant(No.62174093)Guangdong Provincial Key Laboratory of Computational Science and Material Design(2019B030301001)+1 种基金Fundamental Research Program of Shenzhen(JCYJ20190809174203802)K.C.Wong Magna Fund in Ningbo University and Natural Science Foundation of Ningbo under Grant(No.202003 N4097).
文摘Highly sensitive and uniform three-dimensional(3D)hybrid heterogeneous structures for use in surface-enhanced Raman scattering(SERS)experiments were fabricated by sequentially decorating high-quality,ultra-clean,graphene quantum dots(GQDs)and Ag nanoparticles(Ag-NPs)onto 3D-graphene.Finite-difference time-domain calculations and scanning Kelvin probe microscopy were used to verify that the Ag-NPs/GQDs/3D-graphene system facilitates substantial electromagnetic enhancement(due to the occurrence of two kinds of"gaps"between the Ag-NPs that form 3D"hot spots")and additional chemical enhancement(in detecting someπ-conjugated molecules).The SERS mechanism was explored in further detail via experimental analysis and confirmed by performing theoretical calculations.The large surface area of the 3D substrate(due to the large specific surface areas of the GQDs and 3D-graphene)results in a better enrichment effect which helps produce lower detection limits.In particular,the detection limits obtained using the Ag-NPs/GQDs/3D-graphene platform can reach 10^(-11)M for rhodamine 6G,10^(-10)M for methylene blue and dopamine,and 10^(-7)M for tetramethylthiuram disulfide and methyl parathion in apple juice(these are superior to most of the results reported using graphene-based SERS substrates).In summary,the 3D-platform Ag-NPs/GQDs/3D-graphene/Si shows outstanding SERS performance.It therefore has excellent application prospects in biochemical molecular detection and food safety monitoring.
基金This work was supported by the National Natural Science Foundation of China(No.11804276)the Natural Science Foundation of Shaanxi,China(No.2019JQ-524)+2 种基金the Open Fund of State Key Laboratory of Transient Optics Photonics(No.SKLST201808)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.17JS122)the Open Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL 2018KF01)。
文摘In this Letter, we demonstrated the switchable single-and dual-wavelength femtosecond soliton generation in single-mode Er-doped fiber lasers with the usage of carboxyl-functionalized graphene oxide(GO-COOH) saturable absorbers(SAs) for the first time, to the best of our knowledge. The fiber laser generated a stable single-wavelength conventional soliton at 1560.1 nm with a pulse duration of 548.1 fs. The dual-wavelength solitons centered at 1531.9 nm and 1555.2 nm with a spacing of approximately 23 nm can be obtained by adjusting the pump power of the cavity. Our experimental results indicated the GO-COOH has great potential to be used in ultrafast fiber lasers as broadband SAs.