期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Metabolic and proteostatic differences in quiescent and active neural stem cells 被引量:1
1
作者 Jiacheng Yu Gang Chen +4 位作者 Hua Zhu Yi Zhong Zhenxing Yang Zhihong Jian xiaoxing xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期43-48,共6页
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerati... Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms. 展开更多
关键词 adult neurogenesis cell metabolic pathway cellular proliferation neural stem cell niches neural stem cells neuronal differentiation nutrient sensing pathway PROTEOSTASIS
下载PDF
Ferroptosis and endoplasmic reticulum stress in ischemic stroke 被引量:1
2
作者 Yina Li Mingyang Li +4 位作者 Shi Feng Qingxue Xu Xu Zhang xiaoxing xiong Lijuan Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期611-618,共8页
Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The prim... Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum,and the progression of inflammatory diseases can trigger endoplasmic reticulum stress.Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival.Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke.However,there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke.This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke,aiming to provide a reference for developing treatments for ischemic stroke. 展开更多
关键词 cell death endoplasmic reticulum stress ferroptosis ischemic stroke lipid peroxidation
下载PDF
Vagus nerve stimulation in cerebral stroke:biological mechanisms,therapeutic modalities,clinical applications,and future directions
3
作者 Li Du Xuan He +3 位作者 xiaoxing xiong Xu Zhang Zhihong Jian Zhenxing Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1707-1717,共11页
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the ... Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the well-being of the individual and the broader socioeconomic impact.Currently,poststroke brain dysfunction is a major and difficult area of treatment.Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autis m,refractory depression,epilepsy,and Alzheimer’s disease.It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as alte ring neurotransmitters and the plasticity of central neuro ns.In animal models of acute ischemic stroke,vagus nerve stimulation has been shown to reduce infarct size,reduce post-stroke neurological damage,and improve learning and memory capacity in rats with stroke by reducing the inflammatory response,regulating bloodbrain barrier permeability,and promoting angiogenesis and neurogenesis.At present,vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation.Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in im proving upper limb motor and cognitive abilities in stroke patients.Further clinical studies have shown that non-invasive vagus nerve stimulation,including ear/ce rvical vagus nerve stimulation,can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect.In this paper,we first describe the multiple effects of vagus nerve stimulation in stroke,and then discuss in depth its neuroprotective mechanisms in ischemic stroke.We go on to outline the res ults of the current major clinical applications of invasive and non-invasive vagus nerve stimulation.Finally,we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends.We believe that vagus nerve stimulation,as an effective treatment for stroke,will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability. 展开更多
关键词 cerebral stroke NEUROPLASTICITY non-invasive vagus nerve stimulation REHABILITATION vagus nerve stimulation
下载PDF
CD4 T cell deficiency attenuates ischemic stroke, inhibits oxidative stress, and enhances Akt/mTOR survival signaling pathways in mice 被引量:1
4
作者 Hongfei Zhang xiaoxing xiong +2 位作者 Lijuan Gu Weiying Xie Heng Zhao 《Chinese Neurosurgical Journal》 CSCD 2018年第4期189-195,共7页
Background: Inhibition of CD4 T cells reduces stroke-induced infarction by inhibiting neuroinflammation in the ischemic brain in experimental stroke. Nevertheless, little is known about its effects on neuronal surviva... Background: Inhibition of CD4 T cells reduces stroke-induced infarction by inhibiting neuroinflammation in the ischemic brain in experimental stroke. Nevertheless, little is known about its effects on neuronal survival signaling pathways. In this study, we investigated the effects of CD4 T cell deficits on oxidative stress and on the Akt/mTOR cell signaling pathways after ischemic stroke in mice. Methods: MHC II gene knockout C57/BL6 mice, with significantly decreased CD4 T cells, were used. Stroke was induced by 60-min middle cerebral artery (MCA) occlusion. Ischemic brain tissues were harvested for Western blotting. Results: The impairment of CD4 T cell production resulted in smaller infarction. The Western blot results showed that iNOS protein levels robustly increased at 5 h and 24 h and then returned toward baseline at 48 h in wild-type mice after stroke, and gene KO inhibited iNOS at 5 h and 24 h. In contrast, the anti-inflammatory marker, arginase I, was found increased after stroke in WT mice, which was further enhanced in the KO mice. In addition, stroke resulted in increased phosphorylated PTEN, Akt, PRAS40, P70S6, and S6 protein levels in WT mice, which were further enhanced in the animals whose CD4 T cells were impaired. Conclusion: The impairment of CD4 T cell products prevents ischemic brain injury, inhibits inflammatory signals, and enhances the Akt/mTOR cell survival signaling pathways. 展开更多
关键词 STROKE NEUROINFLAMMATION CD4 T cells Akt MTOR PTEN
原文传递
Small-Molecule Fluorophores for Near-Infrared IIb Imaging and ImageGuided Therapy of Vascular Diseases
5
作者 Yang Li Hua Zhu +9 位作者 Xiaobo Wang Yan Cui Lijuan Gu Xiaowen Hou Mengting Guan Junzhu Wu Yuling Xiao xiaoxing xiong Xianli Meng Xuechuan Hong 《CCS Chemistry》 CAS 2022年第12期3735-3750,共16页
Accurate and dynamic visualization of vascular diseases can contribute to restraining further deterioration from diseases in a timely manner.However,visualization is still unable to precisely determine whether and to ... Accurate and dynamic visualization of vascular diseases can contribute to restraining further deterioration from diseases in a timely manner.However,visualization is still unable to precisely determine whether and to what extent blood vessels or brain tissues are damaged.Here,we report novel benzobis(1,2,5-thiadiazole)-based second near-infrared region(NIR-II)fluorophores HY1-HY4 with highly twisted structures(55°at the S_(0) state),extremely strong aggregation-induced emission(AIE)characteristics(I/I_(0)>13),and remarkably high fluorescence quantum yields(QYs)(up to 14.45%)in the NIR-II region(>1000 nm)and∼0.27%in the nearinfrared IIb window(NIR-IIb,>1500 nm)in aqueous solution.Using NIR-IIb AIE HY4 dots,high-resolution NIR-IIb fluorescence imaging of revascularization and thrombolysis,and real-time feedback of the therapeutic efficacy of Chinese medicine Dengzhan Xixin injection(DXI)on ischemic stroke,were achieved for the first time.In addition,results showed that DXI conferred neuroprotection against cerebral ischemia injury mediated via the angiogenesis pathway.These attractive results provide a new perspective for designing ultrabright NIR-IIb probes for vascular-related phenomena,disease assessment,and precise intraoperative imageguided therapy with a deeper tissue penetration depth and higher resolution. 展开更多
关键词 aggregation-induced emission NIR-IIb imaging(1500-1700 nm) vascular diseases ischemic stroke image-guided therapy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部