Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the anal...Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the analysis of the earthquake preparation process before a strong earthquake occurs. Furthermore,the seismic risks on active faults are studied. The results show that the earthquake probabilities on the Xianshuihe fault,the Altyn Tagh fault,the east Kunlun fault and Xiaojiang fault are significantly greater than other faults in the Chinese mainland,which indicates that the level of stress accumulation on these faults are higher than on other faults. Therefore,these faults may have a seismic risk for strong earthquake in future.展开更多
We use five published source models to calculate the Coulomb failure stress changes induced by the Ms8.0 Wenchuan earthquake, and analyze the association between stress changes and the subsequent earthquakes. Based on...We use five published source models to calculate the Coulomb failure stress changes induced by the Ms8.0 Wenchuan earthquake, and analyze the association between stress changes and the subsequent earthquakes. Based on the analysis of uncertainties resulting from source models, we determine the stress changes on nearby faults caused by the Wenchuan earthquake. Moreover, we focus on the seismicity rate change as a function of time on every fault under the influence of stress changes. The results indicate that the spatial distributions of aftershocks correlate well with the regions where stress is calculated to increase using the related models. The largest lobes of dropped stress lie in the west and east sides of source fault. The largest lobes of increased failure stress close to southern and northern ends of the source fault extend into the whole source failure plane. In addition, another region of increased stress lies in the Wenchuan-Yingxiu zone close to the southern segment of source fault, where a large number of aftershocks have occurred. And subsequent earthquakes seem to extend to even more remote distances; therefore, this area also has a high risk of seismic hazard. We find that the positive stress changes on nearby faults imposed by the Wenchuan earthquake produce an encouraging effect on seismicity rate. The effect is most significant on the Pengxian-Guanxian fault and Qingchuan fault, the value of seismicity rate maintains two times greater than the value before the mainshock for the next hundred years on these faults, and the time needed for the aftershock rate to recover to the pre-mainshock seismicity rate can reach up to 800-900 yr. The influence is not significant on the western Qinling fault, the Longquanshan fault, the Xianshuihe fault, the Yulongxi fault, the Anninghe fault, the Minjiang fault, and the Aba fault. Compared with the seismicity rate on these faults before the mainshock, the aftershock rate is raised by less than two times, and the time of perturbation duration is not long. The stress changes on the Fubianhe fault and Huya fault are negative, which reduce the seismicity for the next thousand years. Under the influence of stress changes caused by the Wenchuan earthquake, both Pengxian-Guanxian fault and Qingchuan fault have a high risk of earthquake occurrence.展开更多
Based on calculations of the tidal Coulomb failure stress and investigations of the correlation between the Earth tide and the Ning'er earthquake sequence, the processes of fault nucleation and failure were simulated...Based on calculations of the tidal Coulomb failure stress and investigations of the correlation between the Earth tide and the Ning'er earthquake sequence, the processes of fault nucleation and failure were simulated. In these simulations we consider the influence of tidal stresses using the rate- and state-dependent friction laws. Furthermore, the effects on tidal trig- gering due to the stress amplitude and periodic oscillation properties were investigated, and the triggering effects between the tidal normal and tidal shear stresses were compared. The results showed that the Ning'er earthquake sequence was a physical consequence of tidal effects. A transition period To exists between the nucleation and failure processes of a seismic fault. When the period T of stress is equal to or becomes larger than To, the fault response becomes dependent on the periodic features of the loading stress; however, for T 〈 To, the response of the fault is nearly independent of the period. Both the tidal normal and tidal shear stresses have similar effect in the nucleation and failure processes; the clock changes generally increase with the maximum amplitudes of the tidal stresses. Tidal normal and tidal shear stresses with positive amplitudes mainly induce earth- quake triggering; however, the triggering effects induced by negative tidal stresses are smaller and faults are not sensitive to negative tidal stresses. Our results primarily reveal the physical mechanisms of tidal stress triggering.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41104036)
文摘Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the analysis of the earthquake preparation process before a strong earthquake occurs. Furthermore,the seismic risks on active faults are studied. The results show that the earthquake probabilities on the Xianshuihe fault,the Altyn Tagh fault,the east Kunlun fault and Xiaojiang fault are significantly greater than other faults in the Chinese mainland,which indicates that the level of stress accumulation on these faults are higher than on other faults. Therefore,these faults may have a seismic risk for strong earthquake in future.
基金supported by National Natural Science Founda-tion of China (Grant No. 40364001)the Construction Project of Inte-grated Deep-Well Seismic Observation System in Shanghai
文摘We use five published source models to calculate the Coulomb failure stress changes induced by the Ms8.0 Wenchuan earthquake, and analyze the association between stress changes and the subsequent earthquakes. Based on the analysis of uncertainties resulting from source models, we determine the stress changes on nearby faults caused by the Wenchuan earthquake. Moreover, we focus on the seismicity rate change as a function of time on every fault under the influence of stress changes. The results indicate that the spatial distributions of aftershocks correlate well with the regions where stress is calculated to increase using the related models. The largest lobes of dropped stress lie in the west and east sides of source fault. The largest lobes of increased failure stress close to southern and northern ends of the source fault extend into the whole source failure plane. In addition, another region of increased stress lies in the Wenchuan-Yingxiu zone close to the southern segment of source fault, where a large number of aftershocks have occurred. And subsequent earthquakes seem to extend to even more remote distances; therefore, this area also has a high risk of seismic hazard. We find that the positive stress changes on nearby faults imposed by the Wenchuan earthquake produce an encouraging effect on seismicity rate. The effect is most significant on the Pengxian-Guanxian fault and Qingchuan fault, the value of seismicity rate maintains two times greater than the value before the mainshock for the next hundred years on these faults, and the time needed for the aftershock rate to recover to the pre-mainshock seismicity rate can reach up to 800-900 yr. The influence is not significant on the western Qinling fault, the Longquanshan fault, the Xianshuihe fault, the Yulongxi fault, the Anninghe fault, the Minjiang fault, and the Aba fault. Compared with the seismicity rate on these faults before the mainshock, the aftershock rate is raised by less than two times, and the time of perturbation duration is not long. The stress changes on the Fubianhe fault and Huya fault are negative, which reduce the seismicity for the next thousand years. Under the influence of stress changes caused by the Wenchuan earthquake, both Pengxian-Guanxian fault and Qingchuan fault have a high risk of earthquake occurrence.
基金supported by the National Natural Science Foundation of China(Grant Nos.4110403641004021)+1 种基金Foundation of Provincial Education Department of Yunnan(Grant No.2014Z009)Foundation of School of Resources&Earth Science in Yunnan University(Grant No.2013CK002)
文摘Based on calculations of the tidal Coulomb failure stress and investigations of the correlation between the Earth tide and the Ning'er earthquake sequence, the processes of fault nucleation and failure were simulated. In these simulations we consider the influence of tidal stresses using the rate- and state-dependent friction laws. Furthermore, the effects on tidal trig- gering due to the stress amplitude and periodic oscillation properties were investigated, and the triggering effects between the tidal normal and tidal shear stresses were compared. The results showed that the Ning'er earthquake sequence was a physical consequence of tidal effects. A transition period To exists between the nucleation and failure processes of a seismic fault. When the period T of stress is equal to or becomes larger than To, the fault response becomes dependent on the periodic features of the loading stress; however, for T 〈 To, the response of the fault is nearly independent of the period. Both the tidal normal and tidal shear stresses have similar effect in the nucleation and failure processes; the clock changes generally increase with the maximum amplitudes of the tidal stresses. Tidal normal and tidal shear stresses with positive amplitudes mainly induce earth- quake triggering; however, the triggering effects induced by negative tidal stresses are smaller and faults are not sensitive to negative tidal stresses. Our results primarily reveal the physical mechanisms of tidal stress triggering.