Stimulated by increasing environmental awareness and renewable-energy utilization capabilities,fuel cell and electrolyzer technologies have emerged to play a unique role in energy storage,conversion,and utilization.In...Stimulated by increasing environmental awareness and renewable-energy utilization capabilities,fuel cell and electrolyzer technologies have emerged to play a unique role in energy storage,conversion,and utilization.In particular,solid oxide electrolysis cells(SOECs)are increasingly attracting the interest of researchers as a platform for the electrolysis and conversion of C1 molecules,such as carbon dioxide and methane.Compared to traditional catalysis methods,SOEC technology offers two major advantages:high energy efficiency and poisoning resistance,ensuring the long-term robustness of C1-to-fuels conversion.In this review,we focus on state-of-the-art technologies and introduce representative works on SOEC-based techniques for C1 molecule electrochemical conversion developed over the past several years,which can serve as a timely reference for designing suitable catalysts and cell processes for efficient and practical conversion of C1 molecules.The challenges and prospects are also discussed to suggest possible research directions for sustainable fuel production from C1 molecules by SOECs in the near future.展开更多
The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neu...The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.展开更多
CONSPECTUS:The carbon balance has been disrupted by the widespread use of fossil fuels and subsequent excessive emissions of carbon dioxide(CO_(2)),which has become an increasingly critical environmental challenge for...CONSPECTUS:The carbon balance has been disrupted by the widespread use of fossil fuels and subsequent excessive emissions of carbon dioxide(CO_(2)),which has become an increasingly critical environmental challenge for human society.The production and use of renewable energy sources and/or chemicals have been proposed as important strategies to reduce emissions,of which the electrochemical CO_(2)(or CO)reduction reaction(CO_(2)RR/CORR)in the aqueous systems represents a promising approach.Benefitted by the capacity of manufacturing high-value-added products(e.g.,ethylene,ethanol,formic acid,etc.)with a net-zero carbon emission,copper-based CO_(2)RR/CORR powered by sustainable electricity is regarded as a potential candidate for carbon neutrality.However,the diversity of selectivities in copper-based systems poses a great challenge to the research in this field and sets a great obstacle for future industrialization.To date,scientists have revealed that the electrocatalyst design and preparation play a significant role in achieving efficient and selective CO_(2)-to-chemical(or CO-to-chemical)conversion.Although substantial efforts have been dedicated to the catalyst preparation and corresponding electrosynthesis of sustainable chemicals from CO_(2)/CO so far,most of them are still derived from empirical or random searches,which are relatively inefficient and cost-intensive.Most of the mechanism studies have suggested that both intrinsic properties(such as electron states)and extrinsic environmental factors(such as surface energy)of a catalyst can significantly alter catalytic performance.Thus,these two topics are mainly discussed for copper-based catalyst developments in this Account.Here,we provided a concise and comprehensive introduction to the well-established strategies employed for the design of copperbased electrocatalysts for CO_(2)RR/CORR.We used several examples from our research group,as well as representative studies of other research groups in this field during the recent five years,with the perspectives of tuning local electron states,regulating alloy phases,modifying interfacial coverages,and adjusting other interfacial microenvironments(e.g.,molecule modification or surface energy).Finally,we employed the techno-economic assessment with a viewpoint on the future application of CO_(2)/CO electroreduction in manufacturing sustainable chemicals.Our study indicates that when carbon price is taken into account,the electrocatalytic CO_(2)-to-chemical conversion can be more market-competitive,and several potential value-added products including formate,methanol,ethylene,and ethanol can all make profits under optimal operating conditions.Moreover,a downstream module employing traditional chemical industrial processes(e.g.,thermal polymerization,catalytic hydrolysis,or condensation process)will also make the whole electrolysis system profitable in the future.These design principles,combined with the recent advances in the development of efficient copper-based electrocatalysts,may provide a low-cost and long-lasting catalytic system for a profitable industrial-scale CO_(2)RR in the future.展开更多
文摘Stimulated by increasing environmental awareness and renewable-energy utilization capabilities,fuel cell and electrolyzer technologies have emerged to play a unique role in energy storage,conversion,and utilization.In particular,solid oxide electrolysis cells(SOECs)are increasingly attracting the interest of researchers as a platform for the electrolysis and conversion of C1 molecules,such as carbon dioxide and methane.Compared to traditional catalysis methods,SOEC technology offers two major advantages:high energy efficiency and poisoning resistance,ensuring the long-term robustness of C1-to-fuels conversion.In this review,we focus on state-of-the-art technologies and introduce representative works on SOEC-based techniques for C1 molecule electrochemical conversion developed over the past several years,which can serve as a timely reference for designing suitable catalysts and cell processes for efficient and practical conversion of C1 molecules.The challenges and prospects are also discussed to suggest possible research directions for sustainable fuel production from C1 molecules by SOECs in the near future.
文摘The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.
文摘CONSPECTUS:The carbon balance has been disrupted by the widespread use of fossil fuels and subsequent excessive emissions of carbon dioxide(CO_(2)),which has become an increasingly critical environmental challenge for human society.The production and use of renewable energy sources and/or chemicals have been proposed as important strategies to reduce emissions,of which the electrochemical CO_(2)(or CO)reduction reaction(CO_(2)RR/CORR)in the aqueous systems represents a promising approach.Benefitted by the capacity of manufacturing high-value-added products(e.g.,ethylene,ethanol,formic acid,etc.)with a net-zero carbon emission,copper-based CO_(2)RR/CORR powered by sustainable electricity is regarded as a potential candidate for carbon neutrality.However,the diversity of selectivities in copper-based systems poses a great challenge to the research in this field and sets a great obstacle for future industrialization.To date,scientists have revealed that the electrocatalyst design and preparation play a significant role in achieving efficient and selective CO_(2)-to-chemical(or CO-to-chemical)conversion.Although substantial efforts have been dedicated to the catalyst preparation and corresponding electrosynthesis of sustainable chemicals from CO_(2)/CO so far,most of them are still derived from empirical or random searches,which are relatively inefficient and cost-intensive.Most of the mechanism studies have suggested that both intrinsic properties(such as electron states)and extrinsic environmental factors(such as surface energy)of a catalyst can significantly alter catalytic performance.Thus,these two topics are mainly discussed for copper-based catalyst developments in this Account.Here,we provided a concise and comprehensive introduction to the well-established strategies employed for the design of copperbased electrocatalysts for CO_(2)RR/CORR.We used several examples from our research group,as well as representative studies of other research groups in this field during the recent five years,with the perspectives of tuning local electron states,regulating alloy phases,modifying interfacial coverages,and adjusting other interfacial microenvironments(e.g.,molecule modification or surface energy).Finally,we employed the techno-economic assessment with a viewpoint on the future application of CO_(2)/CO electroreduction in manufacturing sustainable chemicals.Our study indicates that when carbon price is taken into account,the electrocatalytic CO_(2)-to-chemical conversion can be more market-competitive,and several potential value-added products including formate,methanol,ethylene,and ethanol can all make profits under optimal operating conditions.Moreover,a downstream module employing traditional chemical industrial processes(e.g.,thermal polymerization,catalytic hydrolysis,or condensation process)will also make the whole electrolysis system profitable in the future.These design principles,combined with the recent advances in the development of efficient copper-based electrocatalysts,may provide a low-cost and long-lasting catalytic system for a profitable industrial-scale CO_(2)RR in the future.