Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make...Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing.Herein,we propose a selfpowered and highly sensitive tribo-label-sensor(TLS)for accurate label identification,positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer.The sensing mechanism,device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment.As the results,TLS delivers 6 times higher signal magnitude than traditional one.Moreover,TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness.This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.展开更多
Efficiently converting the random vibration energy widely existed in human activities and natural environments into electricity is significant to the local power supply of sensor nodes in the internet of things.Howeve...Efficiently converting the random vibration energy widely existed in human activities and natural environments into electricity is significant to the local power supply of sensor nodes in the internet of things.However,the conversion efficiency of energy harvester is relatively low due to the limitation of device’s intrinsic frequency.In this work,a multi-layered,wavy super-structuredtriboelectric nanogenerator(SS-TENG)is designed,whose output performances can be greatly promoted by combining the charge excitation mechanism.The steel sheet acts not only as an electrode but also as a supporter for the overall frame of SSTENG,which effectively improves the space utilization rate and results in a volume charge density up to 129 mC·m^(−3).In addition,the resonant frequency width of the SS-TENG can be widened by changing the parameters of the superstructure.For demonstration,the SS-TENG can sustainably drive two temperature and humidity sensors in parallel by harvesting vibration energy.This work may provide an effective strategy for harvesting vibration energy and broadening frequency response.展开更多
基金supported by the National Key Research and Development Program(2021YFA1201602)the NSFC(62004017)+2 种基金the Fundamental Research Funds for the Central Universities(2021CDJQY-019)J.C.also want to acknowledge the supporting from the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyjmsxmX0746)the Scientific Research Project of Chongqing Education Committee(Grant No.KJQN202100522).
文摘Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing.Herein,we propose a selfpowered and highly sensitive tribo-label-sensor(TLS)for accurate label identification,positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer.The sensing mechanism,device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment.As the results,TLS delivers 6 times higher signal magnitude than traditional one.Moreover,TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness.This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.
基金the National Key Research and Development Program(No.2021YFA1201602)the NSFC(No.62004017)+3 种基金the Fundamental Research Funds for the Central Universities(No.2021CDJQY-019)the Graduate Research and Innovation Foundation of Chongqing,China(No.CYB22047)J.C.also wants to acknowledge the supports from the Natural Science Foundation of Chongqing(No.cstc2021jcyjmsxmX0746)the Scientific Research Project of Chongqing Education Committee(No.KJQN202100522).
文摘Efficiently converting the random vibration energy widely existed in human activities and natural environments into electricity is significant to the local power supply of sensor nodes in the internet of things.However,the conversion efficiency of energy harvester is relatively low due to the limitation of device’s intrinsic frequency.In this work,a multi-layered,wavy super-structuredtriboelectric nanogenerator(SS-TENG)is designed,whose output performances can be greatly promoted by combining the charge excitation mechanism.The steel sheet acts not only as an electrode but also as a supporter for the overall frame of SSTENG,which effectively improves the space utilization rate and results in a volume charge density up to 129 mC·m^(−3).In addition,the resonant frequency width of the SS-TENG can be widened by changing the parameters of the superstructure.For demonstration,the SS-TENG can sustainably drive two temperature and humidity sensors in parallel by harvesting vibration energy.This work may provide an effective strategy for harvesting vibration energy and broadening frequency response.