期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dynamic plugging regulating strategy of pipeline robot based on reinforcement learning
1
作者 xing-yuan miao Hong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期597-608,共12页
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p... Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process. 展开更多
关键词 Pipeline isolation plugging robot Plugging-induced vibration Dynamic regulating strategy Extreme learning machine Improved sparrow search algorithm Modified Q-learning algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部