期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel fine-resolution snow depth retrieval model to revealdetailed spatiotemporal patterns of snow cover in NortheastChina 被引量:2
1
作者 Yanlin Wei Xiaofeng Li +2 位作者 Lingjia Gu xingming zheng Tao Jiang 《International Journal of Digital Earth》 SCIE EI 2023年第1期1164-1185,共22页
Seasonal snow cover is a key component of the global climate and hydrological system,it has drawn considerable attention under global warming conditions.Although several passive microwave(PMW)snow depth(SD)products ha... Seasonal snow cover is a key component of the global climate and hydrological system,it has drawn considerable attention under global warming conditions.Although several passive microwave(PMW)snow depth(SD)products have been developed since the 1970s,they inherit noticeable errors and uncertainties when representing spatial distributions and temporal changes of SD,especially in complex mountainous regions.In this paper,we developed afine-resolution SD retrieval model(FSDM)using machine learning to improve SD estimation quality for Northeast China and produced a long-term,fine-resolution,daily SD dataset.The accuracies of the FSDM dataset were evaluated against in-situ SD data along with existing SD products.The results showed the FSDM dataset provided satisfactory inversion accuracy in spatiotemporal evaluation,with the root-mean-square error(RMSE),bias,and correlation coefficient(R)of 7.10 cm,-0.13 cm,and 0.60.Additionally,we analyzed the spatiotemporal variations of SD in Northeast China and found that snow cover was mainly distributed in the Greater Khingan Range,Lesser Khingan Mountains,and Changbai Mountain regions.The SD exhibited high-low distribution patterns with the increased latitude.The annual mean SD slightly increased at the rate of 0.029 cm/year during 1987-2018. 展开更多
关键词 Passive microwave remote sensing snow depth inversion machine learning fine resolution Northeast China
原文传递
基于地块形态特征的农田作物行向识别方法验证
2
作者 曲福恒 丁天雨 +2 位作者 郑兴明 马晶 王楷文 《遥感技术与应用》 2024年第5期1213-1222,共10页
作物行结构作为耕地表面的典型周期性结构特征,其方向会对测量雷达后向散射系数和光学反射率的结果造成显著影响。针对高分辨遥感影像纹理特征提取作物行向时效率低、计算资源需求大导致难以应用于大区域的问题,以黑龙江省友谊县为研究... 作物行结构作为耕地表面的典型周期性结构特征,其方向会对测量雷达后向散射系数和光学反射率的结果造成显著影响。针对高分辨遥感影像纹理特征提取作物行向时效率低、计算资源需求大导致难以应用于大区域的问题,以黑龙江省友谊县为研究区,将地块作为最小研究对象,验证利用地块形态特征识别作物行向的可行性。本研究利用多种图像处理算法计算地块长边与短边的长度比值(长宽比),分析作物行向和地块长边方向之间的相关性,对比不同地块长宽比对作物行向识别率和识别精度的影响。结果表明:随着地块长宽比阈值增加,行向的识别率从82.0%降低到34.8%,行向识别均方根误差(Root Mean Square Error,RMSE)从21.46°降低至1.78°;在不同长宽比阈值条件下,直线检测器算法识别作物行向的平均精度(R^(2)=0.93,RMSE=9.53°)高于概率霍夫变换(R^(2)=0.81,RMSE=20.80°)。该方法可以实现对大范围农田地块作物行向的识别,为遥感卫星影像识别作物行方向提供新的思路。 展开更多
关键词 光学遥感 作物行向 直线检测 长宽比 农田
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部