Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc...Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.展开更多
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the ...During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs.展开更多
Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method...Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method,has been reported.In this method,the customized precursor paste and programmable shape are two main advantages.Here,we have put forward a new way to customize the YBCO 3D-printing precursor paste which is doped with Al_(2)O_(3)nanoparticles to obtain YBCO with higher thermal conductivity.The great rheological properties of precursor paste after being doped with Al_(2)O_(3)nanoparticles can help the macroscopic YBCO samples with high thermal conductivity fabricated stably with high crystalline and lightweight properties.Test results show that the peak thermal conductivity of Al_(2)O_(3)-doped YBCO can reach twice as much as pure YBCO,which makes a great effort to reduce the quench propagation speed.Based on the microstructure analysis,one can find that the thermal conductivity of Al_(2)O_(3)-doped YBCO has been determined by its components and microstructures.In addition,a macroscopic theoretical model has been proposed to assess the thermal conductivity of different microstructures,whose calculated results take good agreement with the experimental results.Meanwhile,a microstructure with high thermal conductivity has been found.Finally,a macroscopic YBCO bulk with the presented high thermal conductivity microstructure has been fabricated by the Al_(2)O_(3)-doped method.Compared with YBCO fabricated by the traditional 3D-printed,the Al_(2)O_(3)-doped structural YBCO bulks present excellent heat transfer performances.Our customized design of 3D-printing precursor pastes and novel concept of structural design for enhancing the thermal conductivity of YBCO superconducting material can be widely used in other DIW 3D-printing materials.展开更多
Influence maximization,whose aim is to maximise the expected number of influenced nodes by selecting a seed set of k influential nodes from a social network,has many applications such as goods advertising and rumour s...Influence maximization,whose aim is to maximise the expected number of influenced nodes by selecting a seed set of k influential nodes from a social network,has many applications such as goods advertising and rumour suppression.Among the existing influence maximization methods,the community‐based ones can achieve a good balance between effectiveness and efficiency.However,this kind of algorithm usually utilise the network community structures by viewing each node as a non‐overlapping node.In fact,many nodes in social networks are overlapping ones,which play more important role in influence spreading.To this end,an overlapping community‐based particle swarm opti-mization algorithm named OCPSO for influence maximization in social networks,which can make full use of overlapping nodes,non‐overlapping nodes,and their interactive information is proposed.Specifically,an overlapping community detection algorithm is used to obtain the information of overlapping community structures,based on which three novel evolutionary strategies,such as initialisation,mutation,and local search are designed in OCPSO for better finding influential nodes.Experimental results in terms of influence spread and running time on nine real‐world social networks demonstrate that the proposed OCPSO is competitive and promising comparing to several state‐of‐the‐arts(e.g.CGA,CMA‐IM,CIM,CDH‐SHRINK,CNCG,and CFIN).展开更多
An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic progra...An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic programming(ADP)algorithm under two event-based triggering mechanisms.It is often challenging to design an optimal control law due to the system deviation caused by asymmetric input constraints.First,a prescribed performance control technique is employed to guarantee the tracking errors within predetermined boundaries.Subsequently,considering the asymmetric input constraints,a discounted non-quadratic cost function is introduced.Moreover,in order to reduce controller updates,an event-triggered control law is developed for ADP algorithm.After that,to further simplify the complexity of controller design,this work is extended to a self-triggered case for relaxing the need for continuous signal monitoring by hardware devices.By employing the Lyapunov method,the uniform ultimate boundedness of all signals is proved to be guaranteed.Finally,a simulation example on a mass–spring–damper system subject to asymmetric input constraints is provided to validate the effectiveness of the proposed control scheme.展开更多
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a...Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs.展开更多
The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be bui...The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be built by using Nb3Sn cablein-conduit conductors(CICC),capable of generating a 13 T magnetic field.In order to assess the performance of the Nb3Sn CICC in nearly the ITER condition,many short samples have been evaluated at the SULTAN test facility(the background magnetic field is of 10.85 T with the uniform length of 400 mm at 1%homogeneity)in Centre de Recherches en Physique des Plasma(CRPP).It is found that the samples with pseudo-long twist pitch(including baseline specimens)show a significant degradation in the current-sharing temperature(Tcs),while the qualification tests of all short twist pitch(STP)samples,which show no degradation versus electromagnetic cycling,even exhibits an increase of Tcs.This behavior was perfectly reproduced in the coil experiments at the central solenoid model coil(CSMC)facility last year.In this paper,the complex structure of the Nb3Sn CICC would be simplified into a wire rope consisting of six petals and a cooling spiral.An analytical formula for the Tcs behavior as a function of the axial strain of the cable is presented.Based on this,the effects of twist pitch,axial and transverse stiffness,thermal mismatch,cycling number,magnetic distribution,etc.,on the axial strain are discussed systematically.The calculated Tcs behavior with cycle number show consistency with the previous experimental results qualitatively and quantitatively.Lastly,we focus on the relationship between Tcs and axial strain of the cable,and we conclude that the Tcs behavior caused by electromagnetic cycles is determined by the cable axial strain.Once the cable is in a compression situation,this compression strain and its accumulation would lead to the Tcs degradation.The experimental observation of the Tcs enhancement in the CS STP samples should be considered as a contribution of the shorter length of the high field zone in SULTAN and CSMC devices,as well as the tight cable structure.展开更多
For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconduc...For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconducting layer in a working magnet can cause transverse tensile stress, which would result in delamination behavior. Therefore many research groups have designed experiments to measure the delamination strength and dedicate to improving that. However, the reason of the discrete distribution of measured data has still not get quantitatively studied, besides, there are lack of investigations on the method of changing depositing conditions to improve the delamination strength except by adding an additional metal layer. In this work, we adopt an anvil test device and obtain delamination strengths as 29.6 MPa of YBa2Cu3O7-x (YBCO)/buffer and 114.6 MPa of buffer/substrate by combing energy disperse spectroscopy (EDS) detection. The reason of discretized measurement data on the delamination strength is explained. Moreover, we find that different temperatures during Ag deposition determine the bonding force of Ag and YBCO layer. The Delamination strength between Ag and YBCO layer increases from 4.4 MPa to larger than 114.6 MPa with temperature elevated from 30℃ to 100℃. Hence we present a novel method for improving the delamination strength of YBCO CCs by setting an optimal temperature of Ag deposition.展开更多
OBJECTIVE To determine the effect of short interference RNA (siRNA) against STAT3 induced inhibition of STAT3 gene expression and on the growth and apoptosis of Lewis lung cancer cells. METHODS pSilencer 2.1-U6 STAT...OBJECTIVE To determine the effect of short interference RNA (siRNA) against STAT3 induced inhibition of STAT3 gene expression and on the growth and apoptosis of Lewis lung cancer cells. METHODS pSilencer 2.1-U6 STAT3 siRNA against STAT3-mRNA was synthesized, Lewis lung cancer cells were divided into 3 groups: vehicle, plasmid, and STAT3 siRNA in which the ceils were treated with RPMI- 1640 culture media, or transfected with pSilencer empty vector, or pSilencer STAT3 siRNA, Semiquantitative RT-PCR and Western blot analysis of STAT3 gene expression in the cells was performed 72 h after transfection, MFr assay for cell proliferation, flow cytometry and DNA laddering electrophoresis were used for determination of cell proliferation and apoptosis, RESULTS STAT3 was markedly expressed at both the mRNA and protein levels in the cells treated with RPMI-1640 media or transfected with the plasmid vector, whereas STAT3 expression was significantly reduced in cells treated with STAT3 siRNA, These findings suggest that STAT3 siRNA effectively inhibited STAT3 expression. Transfection of the cells with STAT3 siRNA resulted in significant cellular growth inhibition and enhanced apoptosis, CONCLUSION Transfection of Lewis lung cancer cells with synthetic STAT3 siRNA resulted in effective inhibition of STAT3 gene expression at both protein and mRNA levels, leading to induced apoptosis and growth suppression.展开更多
Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working proces...Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.展开更多
Gully erosion is one of the most severe types of land degradation,hindering food production and sustainable agricultural development.However,the historical evolution process and the impact of land use change on gully ...Gully erosion is one of the most severe types of land degradation,hindering food production and sustainable agricultural development.However,the historical evolution process and the impact of land use change on gully erosion remain unclear.To address this issue,we conducted a field investigation on gully erosion in 2018 and interpreted land use and gullies using historical remote sensing images in 1968 and 1978 over an area of 84.48 km^(2).The study found that from 1968 to 1978 to 2018,all gully morphological parameters including gully length density and gully areal density increased significantly.The main origin of gully erosion found was from dry farmland.The annual soil loss rate induced by gully erosion was 1.46 mm during 1968–2018.Gully erosion rates were higher during 1968–1978 than during 1978–2018.Furthermore,the length,areal and volumetric erosion rates in gullies formed by multiple gullies merging was greater than that of newly formed gullies(NFG)and gullies developing continuously from a single pre-existing gully,while the widening rate of NFG was highest.The susceptibility of land use types to gully erosion was in the order of woodland<dry farmland<degraded land.The annual average increase in gully area was 871.09 m^(2) km^(-2) year^(-1) for parcels that were converted from woodland to dry farmland,which was 5.56 times and 1.78 times greater than that of woodland and dry farmland maintenance,respectively.Therefore,urgent implementation of ecological land use plans and gully erosion control practices is suggested for this region.展开更多
Flux avalanches,prevalently existing in superconducting thin films,can cause catastrophic breakdowns of electromagnetic properties and even irreversible damage to superconducting materials.Metal coating is an effectiv...Flux avalanches,prevalently existing in superconducting thin films,can cause catastrophic breakdowns of electromagnetic properties and even irreversible damage to superconducting materials.Metal coating is an effective way to suppress the flux avalanches in superconducting thin films.Nevertheless,it is difficult to reveal the suppression mechanisms due to the challenge of effectively separating the simultaneous eddy currents and heat exchange in the metal coating.In this work,the eddy currents and heat exchange in the Ag metal coating are separated by setting a thermal insulation layer,and its inhibiting effect on the flux avalanches of the YBCO superconducting thin films is elucidated.The results indicate that eddy currents play an important part in suppressing magnetic flux avalanches,and their effect strengthens with increasing Ag thickness.Meanwhile,employing the double-exposure method,the flux avalanche velocity of YBCO superconducting thin films was measured,revealing a significant decrease in the magnetic flux avalanche velocity due to suppression by eddy currents.Moreover,a theoretical model was established to investigate the influence of eddy currents on the motion of a single vortex,and the calculated results showed good agreement with the experiments.These findings provide a better understanding of the flux avalanches and their suppression in YBCO superconducting thin films.展开更多
The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the ...The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the transport current in CORC cables under high magnetic field,which will affect the stress and strain distributions of tapes in the cables and the performance of superconducting tape.This paper establishes a two-dimensional axisymmetric model to analyze the mechanical response of CORC cables subjected to the Lorentz force and analyzes the influence of air gaps on stress and strain distributions inside the cables.The T-A method is used to calculate the distributions of current density,magnetic field and the Lorentz force in CORC cables.The mechanical response of CORC cables is analyzed by applying the Lorentz force as an external load in the mechanical model.The direction of electromagnetic force is analyzed in CORC cables with and without shielding current,and the results show that the shielding current can lead to the concentration of electromagnetic force.The maximum stress and strain occur on both sides of the superconducting tapes in the cables with shielding current.Reducing the size of air gaps can reduce the stress and strain in the superconducting layers.The analysis of mechanical response of CORC cables can play an important role in optimizing the design of CORC cables and improving transmission performance.展开更多
Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+tran...Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+transport in SPEs at room temperature.Anion-containing polymer-chains incorporated SPEs(ASPEs)are therefore developed to enhance Li^(+) diffusion kinetics.Herein,we propose a novel and feasible strategy to incorporate the anion-containing polymer-chains,such as lithiated perfluorinated sulfonic acid(PFSA),into polyvinylidene fluoride(PVDF)polymer-based SPEs.The immobile anion groups from the PFSA-chains impede the migration of mobile anion groups dissociated from the Li salt.The transference number is thus raised from∼0.3 to 0.52 with the introduction of anion-containing polymer-chains into SPEs.The electrostatic repulsion among anion-containing chains also reduces the close chain stacking and brings 159%increase in the ionic conductivity to 0.83×10^(−3) S/cm at 30℃ in contrast with the pure PVDF-based SPE.In addition,LiFeO_(4)/Li batteries with ASPEs exhibit 55%capacity boost at 0.5 C in contrast to the capacity of batteries with pure-PVDF SPEs,and also offer more than 1000 charge/discharge cycles.Our research findings potentially offer a facile strategy to design thermal stable SPEs with superior Li^(+) transport behaviors towards developing high-performance SPEs-based batteries.展开更多
Nb_(3)Sn triple‐helical structure is the elementary structure in the superconducting cable of ITER magnets and undergoes prolonged fatigue loading in extreme environments leading to serious damage degradation.In this...Nb_(3)Sn triple‐helical structure is the elementary structure in the superconducting cable of ITER magnets and undergoes prolonged fatigue loading in extreme environments leading to serious damage degradation.In this paper,the fatigue behaviors of the Nb_(3)Sn triple‐helical structure have been investigated by the strain cycling fatigue experiments at liquid nitrogen temperature.The results indicate that Nb_(3)Sn triple‐helical structures with short twist‐pitches possess excellent fatigue damage resistance than that of long twist‐pitches,such as longer fatigue life,slower damage degradation,and smaller energy dissipation.Meanwhile,a theoretical model of damage evolution has been established to reveal the effects of twist‐pitches on fatigue properties for triplehelical structures,which is also validated by the present experimental data.Furthermore,one can see that the Nb_(3)Sn superconducting wires in a triple‐helical structure with the shorter twist‐pitches have a larger elongation of helical structure and less cyclic deformation,which can be considered as the main mechanism of better fatigue damage properties for the triple‐helical structures during the strain cycling processes.These findings provide a better understanding of the fatigue properties and damage mechanisms for Nb_(3)Sn triple‐helical structures in superconducting cables of ITER magnets.展开更多
The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fibe...The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.展开更多
Superconducting thin films are widely used in superconducting quantum interferometers,microwave devices,etc.The electrical performance of a superconducting thin film is often affected by structural deformation or stre...Superconducting thin films are widely used in superconducting quantum interferometers,microwave devices,etc.The electrical performance of a superconducting thin film is often affected by structural deformation or stress.Based on four-point bending of a Cu-Be beam,we constructed a device that could apply uniaxial,uniform.compressive strain to a superconducting thin film at both room temperature and the temperature of liquid nitrogen.The thin film was placed into a slot carved in the Cu-Be beam.We optimized the size of this slot via numerical simulation.Our results indicated that the slot width was optimal when it was same as the width of the Cu-Be beam.Notably,the sample bended hardly after machining two slits along width direction on both sides of the slot.A YBa2Cu3O7-δSrTiO3(YBCO-STO)film was used as an example.It was loadedby the aforementioned device to determine its electrical characteristics as functions of the uniaxial-uniform-compressive strain.The optimized design allowed the sample to be compressed to a larger strain without breaking it.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62006001,62372001)the Natural Science Foundation of Chongqing City(Grant No.CSTC2021JCYJ-MSXMX0002).
文摘Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.
基金This work was supported in part by the National Key Research and Development Program of China(2018AAA0100100)the National Natural Science Foundation of China(61822301,61876123,61906001)+2 种基金the Collaborative Innovation Program of Universities in Anhui Province(GXXT-2020-051)the Hong Kong Scholars Program(XJ2019035)Anhui Provincial Natural Science Foundation(1908085QF271).
文摘During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs.
基金supported by the Fund of Natural Science Foundation of China(No.11872196,12232005)supported by the Outstanding Postgraduate‘Innovation Star’Fund for Distinguished of Gansu Province(No.2021CXZX-032).
文摘Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method,has been reported.In this method,the customized precursor paste and programmable shape are two main advantages.Here,we have put forward a new way to customize the YBCO 3D-printing precursor paste which is doped with Al_(2)O_(3)nanoparticles to obtain YBCO with higher thermal conductivity.The great rheological properties of precursor paste after being doped with Al_(2)O_(3)nanoparticles can help the macroscopic YBCO samples with high thermal conductivity fabricated stably with high crystalline and lightweight properties.Test results show that the peak thermal conductivity of Al_(2)O_(3)-doped YBCO can reach twice as much as pure YBCO,which makes a great effort to reduce the quench propagation speed.Based on the microstructure analysis,one can find that the thermal conductivity of Al_(2)O_(3)-doped YBCO has been determined by its components and microstructures.In addition,a macroscopic theoretical model has been proposed to assess the thermal conductivity of different microstructures,whose calculated results take good agreement with the experimental results.Meanwhile,a microstructure with high thermal conductivity has been found.Finally,a macroscopic YBCO bulk with the presented high thermal conductivity microstructure has been fabricated by the Al_(2)O_(3)-doped method.Compared with YBCO fabricated by the traditional 3D-printed,the Al_(2)O_(3)-doped structural YBCO bulks present excellent heat transfer performances.Our customized design of 3D-printing precursor pastes and novel concept of structural design for enhancing the thermal conductivity of YBCO superconducting material can be widely used in other DIW 3D-printing materials.
基金supported in part by the National Natural Science Foundation of China(61976001,62076001,61876184)the Key Projects of University Excellent Talents Support Plan of Anhui Provincial Department of Education(gxyqZD2021089)+1 种基金the University Synergy Innovation Program of Anhui Province(GXXT‐2020‐050)the Natural Science Foundation of Anhui Province(2008085QF309).
文摘Influence maximization,whose aim is to maximise the expected number of influenced nodes by selecting a seed set of k influential nodes from a social network,has many applications such as goods advertising and rumour suppression.Among the existing influence maximization methods,the community‐based ones can achieve a good balance between effectiveness and efficiency.However,this kind of algorithm usually utilise the network community structures by viewing each node as a non‐overlapping node.In fact,many nodes in social networks are overlapping ones,which play more important role in influence spreading.To this end,an overlapping community‐based particle swarm opti-mization algorithm named OCPSO for influence maximization in social networks,which can make full use of overlapping nodes,non‐overlapping nodes,and their interactive information is proposed.Specifically,an overlapping community detection algorithm is used to obtain the information of overlapping community structures,based on which three novel evolutionary strategies,such as initialisation,mutation,and local search are designed in OCPSO for better finding influential nodes.Experimental results in terms of influence spread and running time on nine real‐world social networks demonstrate that the proposed OCPSO is competitive and promising comparing to several state‐of‐the‐arts(e.g.CGA,CMA‐IM,CIM,CDH‐SHRINK,CNCG,and CFIN).
基金supported in part by the National Natural Science Foundation of China(62033003,62003093,62373113,U23A20341,U21A20522)the Natural Science Foundation of Guangdong Province,China(2023A1515011527,2022A1515011506).
文摘An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic programming(ADP)algorithm under two event-based triggering mechanisms.It is often challenging to design an optimal control law due to the system deviation caused by asymmetric input constraints.First,a prescribed performance control technique is employed to guarantee the tracking errors within predetermined boundaries.Subsequently,considering the asymmetric input constraints,a discounted non-quadratic cost function is introduced.Moreover,in order to reduce controller updates,an event-triggered control law is developed for ADP algorithm.After that,to further simplify the complexity of controller design,this work is extended to a self-triggered case for relaxing the need for continuous signal monitoring by hardware devices.By employing the Lyapunov method,the uniform ultimate boundedness of all signals is proved to be guaranteed.Finally,a simulation example on a mass–spring–damper system subject to asymmetric input constraints is provided to validate the effectiveness of the proposed control scheme.
基金supported in part by the National Key Research and Development Program of China(2018AAA0100100)the National Natural Science Foundation of China(61906001,62136008,U21A20512)+1 种基金the Key Program of Natural Science Project of Educational Commission of Anhui Province(KJ2020A0036)Alexander von Humboldt Professorship for Artificial Intelligence Funded by the Federal Ministry of Education and Research,Germany。
文摘Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs.
基金supported by the National Natural Science Foundation of China(Grant 11622217)the National Key Project of Scientific Instrument and Equipment Development(Grant 11327802)supported by the Fundamental Research Funds for the Central Universities(Grants lzujbky-2017-ot18,lzujbky-2017-k18)
文摘The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be built by using Nb3Sn cablein-conduit conductors(CICC),capable of generating a 13 T magnetic field.In order to assess the performance of the Nb3Sn CICC in nearly the ITER condition,many short samples have been evaluated at the SULTAN test facility(the background magnetic field is of 10.85 T with the uniform length of 400 mm at 1%homogeneity)in Centre de Recherches en Physique des Plasma(CRPP).It is found that the samples with pseudo-long twist pitch(including baseline specimens)show a significant degradation in the current-sharing temperature(Tcs),while the qualification tests of all short twist pitch(STP)samples,which show no degradation versus electromagnetic cycling,even exhibits an increase of Tcs.This behavior was perfectly reproduced in the coil experiments at the central solenoid model coil(CSMC)facility last year.In this paper,the complex structure of the Nb3Sn CICC would be simplified into a wire rope consisting of six petals and a cooling spiral.An analytical formula for the Tcs behavior as a function of the axial strain of the cable is presented.Based on this,the effects of twist pitch,axial and transverse stiffness,thermal mismatch,cycling number,magnetic distribution,etc.,on the axial strain are discussed systematically.The calculated Tcs behavior with cycle number show consistency with the previous experimental results qualitatively and quantitatively.Lastly,we focus on the relationship between Tcs and axial strain of the cable,and we conclude that the Tcs behavior caused by electromagnetic cycles is determined by the cable axial strain.Once the cable is in a compression situation,this compression strain and its accumulation would lead to the Tcs degradation.The experimental observation of the Tcs enhancement in the CS STP samples should be considered as a contribution of the shorter length of the high field zone in SULTAN and CSMC devices,as well as the tight cable structure.
基金supported by the National Natural Science Foundation of China(Grants 11622217 and 11872196)the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(Grants lzujbky-2017-ot18,lzujbky-2017-k18,and lzujbky-2018-9)
文摘For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconducting layer in a working magnet can cause transverse tensile stress, which would result in delamination behavior. Therefore many research groups have designed experiments to measure the delamination strength and dedicate to improving that. However, the reason of the discrete distribution of measured data has still not get quantitatively studied, besides, there are lack of investigations on the method of changing depositing conditions to improve the delamination strength except by adding an additional metal layer. In this work, we adopt an anvil test device and obtain delamination strengths as 29.6 MPa of YBa2Cu3O7-x (YBCO)/buffer and 114.6 MPa of buffer/substrate by combing energy disperse spectroscopy (EDS) detection. The reason of discretized measurement data on the delamination strength is explained. Moreover, we find that different temperatures during Ag deposition determine the bonding force of Ag and YBCO layer. The Delamination strength between Ag and YBCO layer increases from 4.4 MPa to larger than 114.6 MPa with temperature elevated from 30℃ to 100℃. Hence we present a novel method for improving the delamination strength of YBCO CCs by setting an optimal temperature of Ag deposition.
文摘OBJECTIVE To determine the effect of short interference RNA (siRNA) against STAT3 induced inhibition of STAT3 gene expression and on the growth and apoptosis of Lewis lung cancer cells. METHODS pSilencer 2.1-U6 STAT3 siRNA against STAT3-mRNA was synthesized, Lewis lung cancer cells were divided into 3 groups: vehicle, plasmid, and STAT3 siRNA in which the ceils were treated with RPMI- 1640 culture media, or transfected with pSilencer empty vector, or pSilencer STAT3 siRNA, Semiquantitative RT-PCR and Western blot analysis of STAT3 gene expression in the cells was performed 72 h after transfection, MFr assay for cell proliferation, flow cytometry and DNA laddering electrophoresis were used for determination of cell proliferation and apoptosis, RESULTS STAT3 was markedly expressed at both the mRNA and protein levels in the cells treated with RPMI-1640 media or transfected with the plasmid vector, whereas STAT3 expression was significantly reduced in cells treated with STAT3 siRNA, These findings suggest that STAT3 siRNA effectively inhibited STAT3 expression. Transfection of the cells with STAT3 siRNA resulted in significant cellular growth inhibition and enhanced apoptosis, CONCLUSION Transfection of Lewis lung cancer cells with synthetic STAT3 siRNA resulted in effective inhibition of STAT3 gene expression at both protein and mRNA levels, leading to induced apoptosis and growth suppression.
基金supported by the National Natural Science Foundation of China(11622217)the National Key Project of Scientific Instrument and Equipment Development(11327802)+1 种基金the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(lzujbky-2017-ot18,lzujbky-2017-k18)
文摘Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.
基金founded by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28010200)the National Natural Science Foundation of China(42107356)+1 种基金National Key Research and Development Program of China(2021YFD1500800)the Heilongjiang Provincial Natural Science Foundation of China(YQ2021C036).
文摘Gully erosion is one of the most severe types of land degradation,hindering food production and sustainable agricultural development.However,the historical evolution process and the impact of land use change on gully erosion remain unclear.To address this issue,we conducted a field investigation on gully erosion in 2018 and interpreted land use and gullies using historical remote sensing images in 1968 and 1978 over an area of 84.48 km^(2).The study found that from 1968 to 1978 to 2018,all gully morphological parameters including gully length density and gully areal density increased significantly.The main origin of gully erosion found was from dry farmland.The annual soil loss rate induced by gully erosion was 1.46 mm during 1968–2018.Gully erosion rates were higher during 1968–1978 than during 1978–2018.Furthermore,the length,areal and volumetric erosion rates in gullies formed by multiple gullies merging was greater than that of newly formed gullies(NFG)and gullies developing continuously from a single pre-existing gully,while the widening rate of NFG was highest.The susceptibility of land use types to gully erosion was in the order of woodland<dry farmland<degraded land.The annual average increase in gully area was 871.09 m^(2) km^(-2) year^(-1) for parcels that were converted from woodland to dry farmland,which was 5.56 times and 1.78 times greater than that of woodland and dry farmland maintenance,respectively.Therefore,urgent implementation of ecological land use plans and gully erosion control practices is suggested for this region.
基金National Natural Science Foundation of China(No.12325205,No.12232005,U2241267,12272155)Major Scientific and Technological Special Project of Gansu Province(23ZDKA0009)Natural Science Foundation of Gansu Province of China(No.23JRRA1118).
文摘Flux avalanches,prevalently existing in superconducting thin films,can cause catastrophic breakdowns of electromagnetic properties and even irreversible damage to superconducting materials.Metal coating is an effective way to suppress the flux avalanches in superconducting thin films.Nevertheless,it is difficult to reveal the suppression mechanisms due to the challenge of effectively separating the simultaneous eddy currents and heat exchange in the metal coating.In this work,the eddy currents and heat exchange in the Ag metal coating are separated by setting a thermal insulation layer,and its inhibiting effect on the flux avalanches of the YBCO superconducting thin films is elucidated.The results indicate that eddy currents play an important part in suppressing magnetic flux avalanches,and their effect strengthens with increasing Ag thickness.Meanwhile,employing the double-exposure method,the flux avalanche velocity of YBCO superconducting thin films was measured,revealing a significant decrease in the magnetic flux avalanche velocity due to suppression by eddy currents.Moreover,a theoretical model was established to investigate the influence of eddy currents on the motion of a single vortex,and the calculated results showed good agreement with the experiments.These findings provide a better understanding of the flux avalanches and their suppression in YBCO superconducting thin films.
基金support from the National Natural Science Foundation of China(Nos.U2241267,11872195 and 12172155)Fundamental Research Funds for the Central Universities(No.lzujbky-2022-48).
文摘The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the transport current in CORC cables under high magnetic field,which will affect the stress and strain distributions of tapes in the cables and the performance of superconducting tape.This paper establishes a two-dimensional axisymmetric model to analyze the mechanical response of CORC cables subjected to the Lorentz force and analyzes the influence of air gaps on stress and strain distributions inside the cables.The T-A method is used to calculate the distributions of current density,magnetic field and the Lorentz force in CORC cables.The mechanical response of CORC cables is analyzed by applying the Lorentz force as an external load in the mechanical model.The direction of electromagnetic force is analyzed in CORC cables with and without shielding current,and the results show that the shielding current can lead to the concentration of electromagnetic force.The maximum stress and strain occur on both sides of the superconducting tapes in the cables with shielding current.Reducing the size of air gaps can reduce the stress and strain in the superconducting layers.The analysis of mechanical response of CORC cables can play an important role in optimizing the design of CORC cables and improving transmission performance.
基金supported by the National Natural Science Foundation of China(Nos.51972043 and 52102212)the Sichuan-Hong Kong Collaborative Research Fund(No.2021YFH0184)+1 种基金the Foundation of Yangtze Delta Region Institute(Huzhou)of UESTC,China(Nos.U03210010 and U03210028)Huzhou Science and Technology Special Representative Project(No.2021KT54).
文摘Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+transport in SPEs at room temperature.Anion-containing polymer-chains incorporated SPEs(ASPEs)are therefore developed to enhance Li^(+) diffusion kinetics.Herein,we propose a novel and feasible strategy to incorporate the anion-containing polymer-chains,such as lithiated perfluorinated sulfonic acid(PFSA),into polyvinylidene fluoride(PVDF)polymer-based SPEs.The immobile anion groups from the PFSA-chains impede the migration of mobile anion groups dissociated from the Li salt.The transference number is thus raised from∼0.3 to 0.52 with the introduction of anion-containing polymer-chains into SPEs.The electrostatic repulsion among anion-containing chains also reduces the close chain stacking and brings 159%increase in the ionic conductivity to 0.83×10^(−3) S/cm at 30℃ in contrast with the pure PVDF-based SPE.In addition,LiFeO_(4)/Li batteries with ASPEs exhibit 55%capacity boost at 0.5 C in contrast to the capacity of batteries with pure-PVDF SPEs,and also offer more than 1000 charge/discharge cycles.Our research findings potentially offer a facile strategy to design thermal stable SPEs with superior Li^(+) transport behaviors towards developing high-performance SPEs-based batteries.
基金supported by the National Natural Science Foundation of China(Nos.12232005,U2241267)the Natural Science Foundation of Gansu Province of China(No.23JRRA1118).
文摘Nb_(3)Sn triple‐helical structure is the elementary structure in the superconducting cable of ITER magnets and undergoes prolonged fatigue loading in extreme environments leading to serious damage degradation.In this paper,the fatigue behaviors of the Nb_(3)Sn triple‐helical structure have been investigated by the strain cycling fatigue experiments at liquid nitrogen temperature.The results indicate that Nb_(3)Sn triple‐helical structures with short twist‐pitches possess excellent fatigue damage resistance than that of long twist‐pitches,such as longer fatigue life,slower damage degradation,and smaller energy dissipation.Meanwhile,a theoretical model of damage evolution has been established to reveal the effects of twist‐pitches on fatigue properties for triplehelical structures,which is also validated by the present experimental data.Furthermore,one can see that the Nb_(3)Sn superconducting wires in a triple‐helical structure with the shorter twist‐pitches have a larger elongation of helical structure and less cyclic deformation,which can be considered as the main mechanism of better fatigue damage properties for the triple‐helical structures during the strain cycling processes.These findings provide a better understanding of the fatigue properties and damage mechanisms for Nb_(3)Sn triple‐helical structures in superconducting cables of ITER magnets.
基金This work is supported by the National Natural Science Foundation of China (No. 11622217)
文摘The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.
基金the National Natural Science Foundation of China(Grants 11622217,11872196,and11902130)the Fundamental ResearchFunds for the Central Universities(Grant lzujbky-2018-9).
文摘Superconducting thin films are widely used in superconducting quantum interferometers,microwave devices,etc.The electrical performance of a superconducting thin film is often affected by structural deformation or stress.Based on four-point bending of a Cu-Be beam,we constructed a device that could apply uniaxial,uniform.compressive strain to a superconducting thin film at both room temperature and the temperature of liquid nitrogen.The thin film was placed into a slot carved in the Cu-Be beam.We optimized the size of this slot via numerical simulation.Our results indicated that the slot width was optimal when it was same as the width of the Cu-Be beam.Notably,the sample bended hardly after machining two slits along width direction on both sides of the slot.A YBa2Cu3O7-δSrTiO3(YBCO-STO)film was used as an example.It was loadedby the aforementioned device to determine its electrical characteristics as functions of the uniaxial-uniform-compressive strain.The optimized design allowed the sample to be compressed to a larger strain without breaking it.