期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis 被引量:1
1
作者 Yi Shen xinshuang chu Qinghong Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期232-239,共8页
Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by subst... Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by substituting a specific residue on Helix Ⅰ, Ⅱ, and at C-terminus of antibody binding domain Z from protein A, respectively, to investigate structural evolution and binding behavior of protein A ligands at liquid-solid interfaces. Among the three affinity dextran-coated Fe_(3)O_(4) magnetic nanoparticles(Fe_(3)O_(4)@Dx MNPs), affinity MNPs with the immobilized ligand via N11C on Helix Ⅰ(Fe_(3)O_(4)@Dx-Z_(1) MNPs) had the highest helical content, and MNPs with the immobilized ligand via G29C on Helix Ⅱ(Fe_(3)O_(4)@Dx-Z_(2) MNPs) had the lowest helical content at the same pHs. It was attributed to less electrostatic attraction of ligand to negatively charged surface on Fe_(3)O_(4)@Dx-Z_(1) MNPs because of less positive charged residues on Helix Ⅰ(K6) than Helix Ⅱ(R27/K35). Among the three affinity MNPs, moreover, the highest affinity to immunoglobulin G(IgG) binding was observed on Fe_(3)O_(4)@Dx-Z_(1) MNPs in isothermal titration calorimetry measurement, further validating greater structural integrity of the ligand on Fe_(3)O_(4)@Dx-Z_(1) MNPs. Finally,the study of IgG binding on MNPs and 96-well plates showed that anchoring sites for ligand immobilization had distinct influences on IgG binding and IgG-mediated antigen binding. This work illustrated that anchoring sites of the ligands had a striking significance for the molecular structure of the ligand at liquid-solid interfaces and raised an important implication for the design and optimization of protein A chromatography and protein A-based immunoassay analysis. 展开更多
关键词 ADSORPTION Interface THERMODYNAMICS Protein A ligand IMMOBILIZATION Molecular structure
下载PDF
Versatile Magnetic Nanoparticles for Spatially Organized Assemblies of Enzyme Cascades:A Comprehensive Investigation of Catalytic Performance
2
作者 xinshuang chu Qinghong Shi 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2022年第12期1437-1446,共10页
Inspired by nature,precise spatial organization of enzyme cascades of interest is crucial to the improvement of catalytic performance.Herein,DNA scaffolds were introduced to construct a toolkit for versatile immobiliz... Inspired by nature,precise spatial organization of enzyme cascades of interest is crucial to the improvement of catalytic performance.Herein,DNA scaffolds were introduced to construct a toolkit for versatile immobilization of enzyme pairs on dextran-coated magnetic nanoparticles(MNPs).After the glucose oxidase(GOx)and horseradish peroxidase(HRP)pair was immobilized through random cova-lent,DNA-directed and DNA tile-directed strategies,the immobilized GOx/HRP pair on the MNP-based carrier assembled with DNA tile(TD@MNPs)exhibited the highest activity due to rational spatial organization and less conformational change of constituent enzymes.With a decrease in interenzyme distance on TD@MNPs,furthermore,the catalytic efficiency of the HRP/GOx pair increased further for both substrates,2,2'-azinobis(3-ethyl-benzthiazoline-6-sulfonate)(ABTS)and 3,3',5,5'-tetramethyl benzidine(TMB).As the assembled HRP was closer to the carrier surface,the catalytic efficiency of the GOx/HRP pair increased by 6.2-fold for positively charged TMB and only by 62%for negatively charged ABTS compared with the free GOx/HRP pair.Moreover,a reversal of catalytic efficiency was found after the GOx/HRP pair was assembled on a positively charged carrier(TD@pMNPs).This research demonstrated that MNP-based car-riers had the potential to become a versatile toolkit for shedding an insight into catalytic performance and the development of new biocatalysts. 展开更多
关键词 ENZYMES IMMOBILIZATION DNA structures Substrate transport Spatial organization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部