期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material
1
作者 Junyan Wang Wanchun Guo +12 位作者 Kesong Tian xinta li Xinyu Wang Panhua li Yu Zhang Bosen Zhang Biao Zhang Shuhu liu Xueai li Zhaopeng Xu Junjie Xu Haiyan Wang Yanglong Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期1-13,共13页
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging des... The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices. 展开更多
关键词 Carbon material Oxygen functionality Air oxidation self-charge
下载PDF
Activation-induce d bowl-shape d nitrogen and oxygen dual-doped carbon material and its excellent supercapacitance
2
作者 Junyan Wang xinta li +5 位作者 Wanchun Guo Kesong Tian Jiamin Zhang Bosen Zhang Xueai li Haiyan Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第29期1-8,共8页
Porous heteroatom-doped carbon materials exhibit promising electrochemical applications because of tunable porous structure and doping heteroatom-induced charge redistribution.Nevertheless,it is still a great challeng... Porous heteroatom-doped carbon materials exhibit promising electrochemical applications because of tunable porous structure and doping heteroatom-induced charge redistribution.Nevertheless,it is still a great challenge to develop porous heteroatom-doped carbon materials with both high-content active heteroatom species and facilitated diffusion route.Herein,we report a bowl-shaped nitrogen and oxygen dual-doping carbon(N,O-doped carbon)material based on low-temperature defluorination pyrolysis and alkali-etched activation of 3-fluorophenol-3-amino-4-hydroxypyridine-formaldehyde co-condensed resin and its excellent supercapacitance.This low-temperature thermal treatment strategy ensures high-content pyrrolic nitrogen(4.6 at.%)and oxygen species(15.9 at.%)to avoid high-temperature treatment-induced heteroatom loss and undesired configuration conversion.In these processes,the defluorination pyrolysis promotes the transformation from the resin to carbon material to some extent,and KOH activation also promotes the ordered arrangement of 002 planes,which together assure the appropriate conductivity of the final microporous carbon material.More importantly,KOH-etched activation partially removes an un-stable nano/microscale domain of the intermediate carbon microspheres to form a unique bowl-shaped structure extremely facilitating the diffusion of the substitutes and/or electrolyte ions.As expected,N,O-doped carbon material displays a remarkable specific capacitance of 486.4 F g^(−1)at 1 A g^(−1)with nitro-gen/oxygen species-dependant pseudocapacitance and good electrochemical durability. 展开更多
关键词 N O-doped carbon Bowl-shaped structure Low-temperature pyrolysis Alkali activation SUPERCAPACITANCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部