期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts
1
作者 Qingyuan Ye xinyu qiu +11 位作者 Jinjin Wang Boya Xu Yuting Su Chenxi Zheng Linyuan Gui Lu Yu Huijuan Kuang Huan Liu Xiaoning He Zhiwei Ma Qintao Wang Yan Jin 《International Journal of Oral Science》 SCIE CAS CSCD 2023年第1期63-75,共13页
Severe muscle injury is hard to heal and always results in a poor prognosis.Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine,however,whether extracellular... Severe muscle injury is hard to heal and always results in a poor prognosis.Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine,however,whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown.Herein,we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells(MSCs-Apo EVs)to treat cardiotoxin induced tibialis anterior(TA)injury and found that MSCs-Apo EVs promoted muscles regeneration and increased the proportion of multinucleated cells.Besides that,we also found that apoptosis was synchronized during myoblasts fusion and MSCs-Apo EVs promoted the apoptosis ratio as well as the fusion index of myoblasts.Furthermore,we revealed that MSCs-Apo EVs increased the relative level of creatine during myoblasts fusion,which was released via activated Pannexin 1 channel.Moreover,we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived Apo EVs(Myo-Apo EVs)instead of apoptotic myoblasts,and creatine was the pivotal metabolite involved in myoblasts fusion.Collectively,our findings firstly revealed that MSCs-Apo EVs can promote muscle regeneration and elucidated that the new function of Apo EVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel,which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles. 展开更多
关键词 APO extracellular RELEASE
下载PDF
Self-adaptive hydrogel for breast cancer therapy via accurate tumor elimination and on-demand adipose tissue regeneration
2
作者 Ran Tian xinyu qiu +4 位作者 Wenyun Mu Bolei Cai Zhongning Liu Shiyu Liu Xin Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期371-378,共8页
The irregular defects and residual tumor tissue after surgery are challenges for effective breast cancer treatment.Herein,a smart hydrogel with self-adaptable size and dual responsive cargos release was fabricated to ... The irregular defects and residual tumor tissue after surgery are challenges for effective breast cancer treatment.Herein,a smart hydrogel with self-adaptable size and dual responsive cargos release was fabricated to treat breast cancer via accurate tumor elimination,on-demand adipose tissue regeneration and effective infection inhibition.The hydrogel consisted of thiol groups ended polyethylene glycol(SH-PEG-SH)and doxorubicin encapsulated mesoporous silica nanocarriers(DOX@MSNs)double crosslinked hyaluronic acid(HA)after loading of antibacterial peptides(AP)and adipose-derived stem cells(ADSCs).A pH-cleavable unsaturated amide bond was pre-introduced between MSNs and HA frame to perform the tumor-specific acidic environment dependent DOX@MSNs release,meanwhile an esterase degradable glyceryl dimethacrylate cap was grafted on MSNs,which contributed to the selective chemotherapy in tumor cells with over-expressed esterase.The bond cleavage between MSNs and HA would also cause the swelling of the hydrogel,which not only provide sufficient space for the growth of ADSCs,but allows the hydrogel to fully fill the irregular defects generated by surgery and residual tumor atrophy,resulting in the on-demand regeneration of adipose tissue.Moreover,the sustained release of AP could be simultaneously triggered along with the size change of hydrogel,which further avoided bacterial infection to promote tissue regeneration. 展开更多
关键词 Smart hydrogel with self-adaptable size Breast cancer therapy Dual responsive cargoes release Selective tumor elimination On-demand adipose tissue regeneration Effective bacteria inhibition
原文传递
Changes of gut microbiome and metabolome in the AOM/DSS mouse model of colorectal cancer with FLASH radiation 被引量:2
3
作者 Mengmeng Xu xinyu qiu +8 位作者 qiu Chen Tianyu Yang Jingze Xu Liang Chen Lixiong Shuai Zhiming Xu Xinyang Cheng Yongsheng Zhang Zhifei Cao 《Radiation Medicine and Protection》 CSCD 2023年第1期1-10,共10页
Objective:To investigate the differences in small intestinal toxicity and taxonomic composition,diversity,and functional pathways of gut microbiome and metabolome after different radiotherapies in mouse colorectal can... Objective:To investigate the differences in small intestinal toxicity and taxonomic composition,diversity,and functional pathways of gut microbiome and metabolome after different radiotherapies in mouse colorectal cancer(CRC)model.Methods:Azoxymethane/dextran sodium sulfate(AOM/DSS)-induced mouse CRC model was treated with single pulse FLASH-RT(dose rate 100 Gy/s)or CONV-RT(dose rate 2 Gy/min)at whole abdomen.At 12 d after radiotherapy,sections of small intestinal tract tissue were dissected for hematoxylin and eosin(HE)staining and the fresh feces were collected for 16S ribosomal RNA(rRNA)microbiome sequencing and liquid chromatography and mass spectrometry(LC-MS)metabolomics sequencing to assess changes in the gut microbiota and metabolites.Microbial high-throughput 16S rRNA data was analyzed with QIIME2 and LEfSe softwares.ProteoWizard,XCMS and Ropls softwares were used for LC-MS analysis.Results:HE staining showed that FLASH-RT maintained small intestinal integrity and reduced the radiotherapyinduced injury.Sequencing analysis of gut fecal microbiome showed that phylum Bacteroidetes and genera Prevotella and Lactobacillus of microbial community were increased after FLASH-RT.Metabolomics sequencing analysis revealed that the metabolites after FLASH-RT were enriched in amino acid metabolism,while cholesterol metabolism was top enriched after CONV-RT.Conclusions:FLASH-RT significantly mitigates the small intestine tissue damage compared with CONV-RT.FLASHRT and CONV-RT have different impact on gut microbiota and its metabolites.Our results provide a theoretical basis for the early evaluation,prediction and individualized treatment of the irradiation effect after novel FLASHRT on tumors through the evaluation of intestinal microbiota and metabolites. 展开更多
关键词 FLASH-RT CONV-RT Small intestinal toxicity Microbiome and metabolomics sequencing
原文传递
A STIR nucleic acid drug delivery system for stirring phenotypic switch of microglia in Parkinson’s disease treatments
4
作者 Yanyue Wu Wenli Wang +9 位作者 xinyu qiu Zhiguo Lu Weihong Ji Jie Shen Huan Peng Ruichen Zhao Jingwen Wang Tianlu Zhang Jun Yang Xin Zhang 《Nano Research》 SCIE EI CSCD 2023年第5期7216-7226,共11页
Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage... Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage to alleviate diseases.Numerous studies have shown that the phenotype switch of microglia is tightly associated with the nuclear factorκB(NF-κB)-mediated inflammatory pathway.Therefore,the small interfering RNA(siRNA)therapy for downregulating the expression of NF-κB,provides a promising therapeutic strategy for Parkinson’s disease treatments.Considering the brain delivery challenges of siRNA,a sequential targeting inflammation regulation(STIR)delivery system based on poly(amino acid)s is developed to improve the therapeutic effects of Parkinson’s disease treatments.The STIR system sequentially targets the blood–brain barrier and the microglia to enhance the effective concentration of siRNA in the targeted microglia.The results demonstrate that the STIR nanoparticles can transform microglial phenotypes and regulate brain inflammation,thus achieving neuronal recovery and abnormal aggregation ofα-synuclein protein(α-syn)reduction in the treatment of Parkinson’s disease.Herein,this STIR delivery system provides a promising therapeutic platform in PD treatments and has great potential for other neurodegenerative diseases’therapies. 展开更多
关键词 sequential targeting inflammation regulation phenotypic switch of microglia targeted drug delivery siRNA-based gene therapy responsive release Parkinson’s disease
原文传递
Immobilization of heparin on decellularized kidney scaffold to construct microenvironment for antithrombosis and inducing reendothelialization 被引量:1
5
作者 Miao Wang Lili Bao +8 位作者 xinyu qiu Xiaoshan Yang Siying Liu Yuting Su Lulu Wang Bo Liu Qing He Shiyu Liu Yan Jin 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第10期1168-1177,共10页
In recent years, rapid development of tissue engineering technology provides possibilities for the construction of artificial tissues or organs. In construction of engineered kidneys, researchers used native decellula... In recent years, rapid development of tissue engineering technology provides possibilities for the construction of artificial tissues or organs. In construction of engineered kidneys, researchers used native decellularized extracellular matrix(ECM) as the scaffolds to recellularization. However, thrombosis has been a great issue that hinders the progress of transplantation in vivo. In this study, heparin was immobilized to the collagen part of decellularized scaffold with collagen-binding peptide(CBP). Through the anticoagulant and endothelial cell reperfusion experiments, it can be demonstrated that the heparinized scaffolds absorbed less platelets and red blood cells which can effectively reduce the formation of thrombosis. Moreover, it is conducive to longterm adhesion of endothelial cells which is important for the formation of subsequent vascularization. Taken together, our results reveal that the whole kidney can be modified by CBP-heparin composite to reduce the thrombosis and provide the better conditions for neovascularization. 展开更多
关键词 肝磷脂 微型环境 构造 支架 研究人员 vivo 脚手架
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部