The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole ...The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contains an extra term besides the sum of the entropies of the two horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon radius to the cosmological horizon radius, and is independent of the charge of the spacetime.展开更多
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11205097)in part by the National Natural Science Foundation of China(Grant No.11475108)+1 种基金supported by Program for the Natural Science Foundation of Shanxi Province,China(Grant No.201901D111315)the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.201901D211441)。
文摘The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contains an extra term besides the sum of the entropies of the two horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon radius to the cosmological horizon radius, and is independent of the charge of the spacetime.