The A1-Cu-Li-(Mg) alloy is a high-performance lightweight material strengthened by complex coexisting precipitates that form in the alloy upon thermal ageing. Using high-resolution (scanning) transmission electron...The A1-Cu-Li-(Mg) alloy is a high-performance lightweight material strengthened by complex coexisting precipitates that form in the alloy upon thermal ageing. Using high-resolution (scanning) transmission electron microscopy in association with first-principles energy calculations, we systematically studied the complex coexisting precipitates in the alloys and correlated their precipitation sequences with thermal ageing processes applied. The principal results are the following: (1) eight types of precipitates can be observed in the alloy; (2) of these precipitates, the Tl-phase is most stable. The S-phase precipitates with segregated Li atoms at their interfacial edges are unexpectedly more stable than the a-phase; (3) the Tl-phase has a characteristic precursor that plays the key role in its nucleation and growth.展开更多
Pre-deformation before aging has been demonstrated to have a positive effect on the mechanical strength of the 7N01 alloy in our previous study,which is rather different from the general negative effects of pre-deform...Pre-deformation before aging has been demonstrated to have a positive effect on the mechanical strength of the 7N01 alloy in our previous study,which is rather different from the general negative effects of pre-deformation on high-strength 7XXX aluminum alloys.In order to explain the strengthening mechanism relating to the positive effect,in the present study,the microstructure of the aged 7N01 alloy with different degrees of pre-deformation was investigated in detail using advanced electron microscopy techniques.Our results show that,without pre-deformation,the aged alloy is strengthened mainly by the η′type of hardening precipitates.In contrast,with pre-deformation,the aged alloy is strengthened by the hierarchical microstructure consisting of the GP-η′type of precipitates formed inside sub-grains,the ηp type of precipitates formed at small-angle boundaries,and the dislocation introduced by pre-deformation(residual work-hardening effect).By visualizing the distribution of theηp precipitates through three-dimensional electron tomography,the 3 D microstructures of dislocation cells are clearly revealed.Proper combinations of ηp precipitates,GP-η′precipitates and residual dislocations in the alloy are responsible for the positive effect of pre-deformation on its mechanical properties.展开更多
Three types of symmetric (1120) tilt low-angle grain boundaries (LAGBs) with array of basal, prismatic, and pyramidal edge full 〈a〉 dislocations in pure Mg have been studied by using the improved Peierls-Nabarro...Three types of symmetric (1120) tilt low-angle grain boundaries (LAGBs) with array of basal, prismatic, and pyramidal edge full 〈a〉 dislocations in pure Mg have been studied by using the improved Peierls-Nabarro model in combination with the generalized stacking fault energy curve. The results show that with decreasing distance between the dislocations in all the three types of tilt LAGBs, the stress and strain fields are gradually suppressed. The reduction extent of the stress and strain fields decreases from the prismatic to basal to pyramidal dislocations. The variation of dislocation line energy (DLE) for all tilt LAGBs is divided into three stages: DLE changes slightly and linearly when the distance is larger than 300 A, - 10%; DLE declines exponentially and quickly when the distance goes from 300 to 100 A, ,- 70%; and finally, the descent speed lowers when the distance is smaller than 100 A and the dislocation core energy is nearly half of the DLE. The grain boundary energy (GBE) decreases when the tilt angle of LAGB increases from1 ° to 2° for all cases. The tilt LAGB consists of pyramidal dislocations always has the largest GBE, while that with array of prismatic dislo- cations has the smallest one in the whole range. The Peierls stress of dislocation in tilt LAGB is nearly unchanged, the same as that of single dislocation. This work is useful for further study of dissociated dislocation, solute segregation, precipitate nucleation in tilt LAGB and its interaction with single dislocations.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51371081, 11427806,51471067,51501059 and 51171063)the National Basic Research Program of China(No.2009CB623704)
文摘The A1-Cu-Li-(Mg) alloy is a high-performance lightweight material strengthened by complex coexisting precipitates that form in the alloy upon thermal ageing. Using high-resolution (scanning) transmission electron microscopy in association with first-principles energy calculations, we systematically studied the complex coexisting precipitates in the alloys and correlated their precipitation sequences with thermal ageing processes applied. The principal results are the following: (1) eight types of precipitates can be observed in the alloy; (2) of these precipitates, the Tl-phase is most stable. The S-phase precipitates with segregated Li atoms at their interfacial edges are unexpectedly more stable than the a-phase; (3) the Tl-phase has a characteristic precursor that plays the key role in its nucleation and growth.
基金financially supported by the National Natural Science Foundation of China(Nos.51831004,11427806,51671082,51471067,11904093)the National Key Research and Development Program of China(No.2016YFB0300801)。
文摘Pre-deformation before aging has been demonstrated to have a positive effect on the mechanical strength of the 7N01 alloy in our previous study,which is rather different from the general negative effects of pre-deformation on high-strength 7XXX aluminum alloys.In order to explain the strengthening mechanism relating to the positive effect,in the present study,the microstructure of the aged 7N01 alloy with different degrees of pre-deformation was investigated in detail using advanced electron microscopy techniques.Our results show that,without pre-deformation,the aged alloy is strengthened mainly by the η′type of hardening precipitates.In contrast,with pre-deformation,the aged alloy is strengthened by the hierarchical microstructure consisting of the GP-η′type of precipitates formed inside sub-grains,the ηp type of precipitates formed at small-angle boundaries,and the dislocation introduced by pre-deformation(residual work-hardening effect).By visualizing the distribution of theηp precipitates through three-dimensional electron tomography,the 3 D microstructures of dislocation cells are clearly revealed.Proper combinations of ηp precipitates,GP-η′precipitates and residual dislocations in the alloy are responsible for the positive effect of pre-deformation on its mechanical properties.
基金supported by the National Natural Science Foundation of China (Nos. 11427806, 51471067, 51371081, 51171063, 51501059 and 51501060)the National Basic Research (973) Program of China (No. 2009CB623704)+2 种基金the Chinese Postdoctoral Science Foundation (No. 2015M582324)the Hunan Provincial Natural Science Foundation (No. 14JJ4052)the Science and Technology Project for Good Postdoctoral Education of China (No. 2015RS4020)
文摘Three types of symmetric (1120) tilt low-angle grain boundaries (LAGBs) with array of basal, prismatic, and pyramidal edge full 〈a〉 dislocations in pure Mg have been studied by using the improved Peierls-Nabarro model in combination with the generalized stacking fault energy curve. The results show that with decreasing distance between the dislocations in all the three types of tilt LAGBs, the stress and strain fields are gradually suppressed. The reduction extent of the stress and strain fields decreases from the prismatic to basal to pyramidal dislocations. The variation of dislocation line energy (DLE) for all tilt LAGBs is divided into three stages: DLE changes slightly and linearly when the distance is larger than 300 A, - 10%; DLE declines exponentially and quickly when the distance goes from 300 to 100 A, ,- 70%; and finally, the descent speed lowers when the distance is smaller than 100 A and the dislocation core energy is nearly half of the DLE. The grain boundary energy (GBE) decreases when the tilt angle of LAGB increases from1 ° to 2° for all cases. The tilt LAGB consists of pyramidal dislocations always has the largest GBE, while that with array of prismatic dislo- cations has the smallest one in the whole range. The Peierls stress of dislocation in tilt LAGB is nearly unchanged, the same as that of single dislocation. This work is useful for further study of dissociated dislocation, solute segregation, precipitate nucleation in tilt LAGB and its interaction with single dislocations.