The optical feedback modulations of a passively mode-locked semiconductor laser with quantum dot structure were investigated in this study. The delay-induced dynamics of QD MLL under the condition of optical feedback ...The optical feedback modulations of a passively mode-locked semiconductor laser with quantum dot structure were investigated in this study. The delay-induced dynamics of QD MLL under the condition of optical feedback have been studied by exploiting a time domain traveling wave(TDTW) model. The conventional TDTW model was improved to make it suitable for studying optical feedback system, especially the system with long external cavity structure. Combing the TDTW model with optical feedback and carrier rate equations, the pulse variation of a single section QD MLL was studied. This new model shows good agreement with the published experimental data. The roundtrip time and local light intensity modulation to the pulse evolution of QD MLL were studied. The results show that when the time for a light to go to and return from external cavity is equal to the integral times of the period of laser pulse without external feedback, resonance will be formed, and the period of pulse sequence is the shortest. The results also show that the stronger the local light intensity modulation is, the shorter the pulse period is.展开更多
Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for m...Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for multi-band signals, DPD becomes very complex, which limits the applications. To reduce the complexity, many simplified DPDs have been proposed. In this work, a new multidimensional DPD is proposed, in which in-band and out-of-band distortion are separated and the out-of-band distortion is evaluated by sum and differences of all input signals instead of all individual input signals, thus complexity is reduced. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each bandwidth of 200 MHz in simulations and a 5-band 20 MHz 64-QAM OFDM signal in experiments are used to validate the pro-posed DPD. The validation is illustrated in the means of power spectrum, AM/AM and AM/PM distortion, and error vector magnitude (EVM) of the received signal constellations. The average EVM improvement by simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average EVM improvement by experiments for 5-band signals is 8.1 dB. Considering the ten times of bandwidth difference, experiments and simulation agree well.展开更多
5G is emerging, but the current fronthaul transmission technologies used for 3G and 4G may not be efficient and appropriate for 5G. It has been found that frequency division multiple access (FDMA) and time- division...5G is emerging, but the current fronthaul transmission technologies used for 3G and 4G may not be efficient and appropriate for 5G. It has been found that frequency division multiple access (FDMA) and time- division multiple access (TDMA) based radio over fiber (RoF) may be considered the most appropriate for 5G fronthaul transmission technology. Due to analog RoF transmission, broadband linearization is required. In this work, both electrical and optical broadband linearization techniques are reviewed.展开更多
基金Sponsored by the Research Project of Xiamen University of Technology(Grant No.KCZX2019148)the Research Project of Xiamen Municipal Bureau of Science and Technology(Grant No.3502Z20193055)。
文摘The optical feedback modulations of a passively mode-locked semiconductor laser with quantum dot structure were investigated in this study. The delay-induced dynamics of QD MLL under the condition of optical feedback have been studied by exploiting a time domain traveling wave(TDTW) model. The conventional TDTW model was improved to make it suitable for studying optical feedback system, especially the system with long external cavity structure. Combing the TDTW model with optical feedback and carrier rate equations, the pulse variation of a single section QD MLL was studied. This new model shows good agreement with the published experimental data. The roundtrip time and local light intensity modulation to the pulse evolution of QD MLL were studied. The results show that when the time for a light to go to and return from external cavity is equal to the integral times of the period of laser pulse without external feedback, resonance will be formed, and the period of pulse sequence is the shortest. The results also show that the stronger the local light intensity modulation is, the shorter the pulse period is.
文摘Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for multi-band signals, DPD becomes very complex, which limits the applications. To reduce the complexity, many simplified DPDs have been proposed. In this work, a new multidimensional DPD is proposed, in which in-band and out-of-band distortion are separated and the out-of-band distortion is evaluated by sum and differences of all input signals instead of all individual input signals, thus complexity is reduced. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each bandwidth of 200 MHz in simulations and a 5-band 20 MHz 64-QAM OFDM signal in experiments are used to validate the pro-posed DPD. The validation is illustrated in the means of power spectrum, AM/AM and AM/PM distortion, and error vector magnitude (EVM) of the received signal constellations. The average EVM improvement by simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average EVM improvement by experiments for 5-band signals is 8.1 dB. Considering the ten times of bandwidth difference, experiments and simulation agree well.
文摘5G is emerging, but the current fronthaul transmission technologies used for 3G and 4G may not be efficient and appropriate for 5G. It has been found that frequency division multiple access (FDMA) and time- division multiple access (TDMA) based radio over fiber (RoF) may be considered the most appropriate for 5G fronthaul transmission technology. Due to analog RoF transmission, broadband linearization is required. In this work, both electrical and optical broadband linearization techniques are reviewed.