Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that ...Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.展开更多
Currently,magnetic storage devices are encountering the problem of achieving lightweight and high integration in mobile computing devices during the information age.As a result,there is a growing urgency for twodimens...Currently,magnetic storage devices are encountering the problem of achieving lightweight and high integration in mobile computing devices during the information age.As a result,there is a growing urgency for twodimensional half-metallic materials with a high Curie temperature(TC).This study presents a theoretical investigation of the fundamental electromagnetic properties of the monolayer hexagonal lattice of Mn_(2)X_(3)(X=S,Se,Te).Additionally,the potential application of Mn_(2)X_(3) as magneto-resistive components is explored.All three of them fall into the category of ferromagnetic half-metals.In particular,the Monte Carlo simulations indicate that the TC of Mn2S3 reachs 381 K,noticeably greater than room temperature.These findings present notable advantages for the application of Mn2S3 in spintronic devices.Hence,a prominent spin filtering effect is apparent when employing non-equilibrium Green’s function simulations to examine the transport parameters.The resulting current magnitude is approximately 2×10^(4) nA,while the peak gigantic magnetoresistance exhibits a substantial value of 8.36×10^(16)%.It is noteworthy that the device demonstrates a substantial spin Seebeck effect when the temperature differential between the electrodes is modified.In brief,Mn_(2)X_(3) exhibits outstanding features as a highTC half-metal,exhibiting exceptional capabilities in electrical and thermal drives spin transport.Therefore,it holds great potential for usage in spintronics applications.展开更多
基金the National Natural Sciencefoundation of China (Grant No. 12174085)the FundamentalResearch Funds for the Central Universities (GrantNo. B220202018)+1 种基金the Basic Science (Natural Science) ResearchProject for the Universities of Jiangsu Province (GrantNo. 23KJD140002)Natural Science Foundation of Nantong(Grant No. JC2023081).
文摘Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11704291 and 12174296)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process of Wuhan University of Science and Technology(Grant Nos.Y202101 and Y202208)+2 种基金the Scientific research project of Education Department of Hubei Province(Grant No.2022024)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.QL20230006)the High-Performance Computing Center of Wuhan University of Science and Technology.S.C.Z.also acknowledges the support from China Scholarship Council.
文摘Currently,magnetic storage devices are encountering the problem of achieving lightweight and high integration in mobile computing devices during the information age.As a result,there is a growing urgency for twodimensional half-metallic materials with a high Curie temperature(TC).This study presents a theoretical investigation of the fundamental electromagnetic properties of the monolayer hexagonal lattice of Mn_(2)X_(3)(X=S,Se,Te).Additionally,the potential application of Mn_(2)X_(3) as magneto-resistive components is explored.All three of them fall into the category of ferromagnetic half-metals.In particular,the Monte Carlo simulations indicate that the TC of Mn2S3 reachs 381 K,noticeably greater than room temperature.These findings present notable advantages for the application of Mn2S3 in spintronic devices.Hence,a prominent spin filtering effect is apparent when employing non-equilibrium Green’s function simulations to examine the transport parameters.The resulting current magnitude is approximately 2×10^(4) nA,while the peak gigantic magnetoresistance exhibits a substantial value of 8.36×10^(16)%.It is noteworthy that the device demonstrates a substantial spin Seebeck effect when the temperature differential between the electrodes is modified.In brief,Mn_(2)X_(3) exhibits outstanding features as a highTC half-metal,exhibiting exceptional capabilities in electrical and thermal drives spin transport.Therefore,it holds great potential for usage in spintronics applications.