New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh o...New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh operating conditions. Here we report on the synthesis of a unique ionogel electrolyte for abuse-tolerant lithium batteries. A hierarchically architected silica/polymer scaffold is designed and fabricated through a facile soft chemistry route, which is competent to confine ionic liquids with superior uptake ability (92.4 wt%). The monolithic ionogel exhibits high conductivity and thermal/mechanical stability, featuring high-temperature elastic modulus and dendrite-free lithium cycling. The Li/LiFePO_(4) pouch cells achieve outstanding cyclability at different temperatures up to 150 ℃, and can sustain cutting, crumpling, and even coupled thermal–mechanical abuses. Moreover, the solid-state lithium batteries with LiNi_(0.60)Co_(0.20)Mn_(0.20)O_(2), LiNi_(0.80)Co_(0.15)Al_(0.05)O_(2), and Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) cathodes demonstrate excellent cycle performances at 60 ℃. These results indicate that the resilient and high-conductivity ionogel electrolyte is promising to realize high-performance lithium batteries with high energy density and safety.展开更多
Li2TiSiO5 receives much interest recently in lithium-ion battery anodes because of its attractive Liinsertion/extraction potential at 0.28 V(vs. Li+/Li), which bridges the potential gap between graphite and Li4 Ti5 O1...Li2TiSiO5 receives much interest recently in lithium-ion battery anodes because of its attractive Liinsertion/extraction potential at 0.28 V(vs. Li+/Li), which bridges the potential gap between graphite and Li4 Ti5 O12. However, Li2TiSiO5 suffers from the low intrinsic electronic conductivity and sluggish Liion transfer kinetics. In this work, we report lithium-ion insertion kinetics of Li2TiSiO5 by Na doping,achieving high-rate capability. Rietveld refinement of X-ray diffraction results reveals that Na doping can enlarge the space of Li slabs, thus reducing the Li-ion transfer barrier and enhancing the Li-ion diffusion kinetics. According to first-principles calculations, Na doping can tune the band structure of Li2TiSiO5 from indirect to direct band, leading to improved electronic conductivity and electrochemical performance. In particular, the Na-doped Li2TiSiO5(Li1.95 Na(0.05)TiSiO5) electrode exhibits outstanding rate capability with a high capacity of 101 m A h g^(-1) at 5 A g^(-1) and superior cyclability with a reversible capacity of 137 m A h g^(-1) under 0.5 A g^(-1) over 150 cycles.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.51972132.51772116 and 52002141)the Program for HUST Academic Frontier Youth Team(2016QYTD04).The authors thank the Analytical and Testing Center of HUST for DMA,TGA measurements,etc.
文摘New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh operating conditions. Here we report on the synthesis of a unique ionogel electrolyte for abuse-tolerant lithium batteries. A hierarchically architected silica/polymer scaffold is designed and fabricated through a facile soft chemistry route, which is competent to confine ionic liquids with superior uptake ability (92.4 wt%). The monolithic ionogel exhibits high conductivity and thermal/mechanical stability, featuring high-temperature elastic modulus and dendrite-free lithium cycling. The Li/LiFePO_(4) pouch cells achieve outstanding cyclability at different temperatures up to 150 ℃, and can sustain cutting, crumpling, and even coupled thermal–mechanical abuses. Moreover, the solid-state lithium batteries with LiNi_(0.60)Co_(0.20)Mn_(0.20)O_(2), LiNi_(0.80)Co_(0.15)Al_(0.05)O_(2), and Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) cathodes demonstrate excellent cycle performances at 60 ℃. These results indicate that the resilient and high-conductivity ionogel electrolyte is promising to realize high-performance lithium batteries with high energy density and safety.
基金supported by the National Natural Science Foundation of China (Nos. 51772116 and 51972132)Program for HUST Academic Frontier Youth Team (2016QYTD04)。
文摘Li2TiSiO5 receives much interest recently in lithium-ion battery anodes because of its attractive Liinsertion/extraction potential at 0.28 V(vs. Li+/Li), which bridges the potential gap between graphite and Li4 Ti5 O12. However, Li2TiSiO5 suffers from the low intrinsic electronic conductivity and sluggish Liion transfer kinetics. In this work, we report lithium-ion insertion kinetics of Li2TiSiO5 by Na doping,achieving high-rate capability. Rietveld refinement of X-ray diffraction results reveals that Na doping can enlarge the space of Li slabs, thus reducing the Li-ion transfer barrier and enhancing the Li-ion diffusion kinetics. According to first-principles calculations, Na doping can tune the band structure of Li2TiSiO5 from indirect to direct band, leading to improved electronic conductivity and electrochemical performance. In particular, the Na-doped Li2TiSiO5(Li1.95 Na(0.05)TiSiO5) electrode exhibits outstanding rate capability with a high capacity of 101 m A h g^(-1) at 5 A g^(-1) and superior cyclability with a reversible capacity of 137 m A h g^(-1) under 0.5 A g^(-1) over 150 cycles.