Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discusse...Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discussed in this paper. The first one is the block sparsity of DCT coefficients of voiced speech formulated from two different aspects which are the distribution of the DCT coefficients of voiced speech and the comparison of reconstruction performance between the mixed program and Basis Pursuit (BP). The block sparsity of DCT coefficients of voiced speech means that some algorithms of block-sparse CS can be used to improve the recovery performance of speech signals. It is proved by the simulation results of the mixed program which is an improved version of the mixed program. The second one is the well known large DCT coefficients of voiced speech focus on low frequency. In line with this feature, a special Gaussian and Partial Identity Joint (GPIJ) matrix is constructed as the sensing matrix for voiced speech signals. Simulation results show that the GPIJ matrix outperforms the classical Gaussian matrix for speech signals of male and female adults.展开更多
According to practical geological and hydrogeological conditions of riverside water-supply well fields in northwestern China, an ideal hydrogeological model has been generalized and a three-dimensional mathematical mo...According to practical geological and hydrogeological conditions of riverside water-supply well fields in northwestern China, an ideal hydrogeological model has been generalized and a three-dimensional mathematical model has been set up. A finite difference method was applied to simulating groundwater flow near a partially penetrating river under riverside pumping, and to analyzing the effects of river width, partial penetration and permeability of riverbed sediments on groundwater recharges. Results show that riverside pumping may cause groundwater to flow beneath the partially penetrating river, and that river width, penetration and riverbed permeability obviously influence flows from the partially penetrating river and constant-head boundaries. However, the pumping output is mainly from the partially penetrating river.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60971129)the National Research Program of China (973 Program) (No. 2011CB302303)the Scientific Innovation Research Program of College Graduate in Jiangsu Province (No. CXLX11_0408)
文摘Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discussed in this paper. The first one is the block sparsity of DCT coefficients of voiced speech formulated from two different aspects which are the distribution of the DCT coefficients of voiced speech and the comparison of reconstruction performance between the mixed program and Basis Pursuit (BP). The block sparsity of DCT coefficients of voiced speech means that some algorithms of block-sparse CS can be used to improve the recovery performance of speech signals. It is proved by the simulation results of the mixed program which is an improved version of the mixed program. The second one is the well known large DCT coefficients of voiced speech focus on low frequency. In line with this feature, a special Gaussian and Partial Identity Joint (GPIJ) matrix is constructed as the sensing matrix for voiced speech signals. Simulation results show that the GPIJ matrix outperforms the classical Gaussian matrix for speech signals of male and female adults.
基金Financial support was provided by the Natural Science Foundation of China(40272108).
文摘According to practical geological and hydrogeological conditions of riverside water-supply well fields in northwestern China, an ideal hydrogeological model has been generalized and a three-dimensional mathematical model has been set up. A finite difference method was applied to simulating groundwater flow near a partially penetrating river under riverside pumping, and to analyzing the effects of river width, partial penetration and permeability of riverbed sediments on groundwater recharges. Results show that riverside pumping may cause groundwater to flow beneath the partially penetrating river, and that river width, penetration and riverbed permeability obviously influence flows from the partially penetrating river and constant-head boundaries. However, the pumping output is mainly from the partially penetrating river.