The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers.Given challenges such as intricate data analysis...The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers.Given challenges such as intricate data analysis,absence of effective assessment methodologies,real-time control strategies,and scarce knowledge of the factors influencing deep gas wells in the so-called flowback stage,a comprehensive study was undertaken on over 160 deep gas wells in Luzhou block utilizing linear flow models and advanced big data analytics techniques.The research results show that:(1)The flowback stage of a deep gas well presents the characteristics of late gas channeling,high flowback rate after gas channeling,low 30-day flowback rate,and high flowback rate corresponding to peak production;(2)The comprehensive parameter AcmKm1/2 in the flowback stage exhibits a strong correlation with the Estimated Ultimate Recovery(EUR),allowing for the establishment of a standardized chart to evaluate EUR classification in typical shale gas wells during this stage.This enables quantitative assessment of gas well EUR,providing valuable insights into production potential and performance;(3)The spacing range and the initial productivity of gas wells have a significant impact on the overall effectiveness of gas wells.Therefore,it is crucial to further explore rational well patterns and spacing,as well as optimize initial drainage and production technical strategies in order to improve their performance.展开更多
Currently,the dynamic erosive small molecule nano-prodrug is of great demand for oral chemotherapy,owing to its precise structure,high drug loading and improved oral bioavailability via overcoming various physiologic ...Currently,the dynamic erosive small molecule nano-prodrug is of great demand for oral chemotherapy,owing to its precise structure,high drug loading and improved oral bioavailability via overcoming various physiologic barriers in gastrointestinal tract,blood circulation and tumor tissues compared to other oral nanomedicines.Herein,this work highlights the successful development of pH-triggered dynamic erosive small molecule nano-prodrugs based on in vivo significant pH changes,which are synthesized via amide reaction between chlorambucil and star-shaped ortho esters.The precise nano-prodrugs exhibit extraordinarily high drug loading(68.16%),electric neutrality,strong hydrophobicity,and dynamic large-to-small size transition from gastrointestinal pH to tumoral pH.These favorable physicochemical properties can effectively facilitate gastrointestinal absorption,blood circulation stability,tumor accumulation,cellular uptake,and cytotoxicity,therefore achieving high oral relative bioavailability(358.72%)and significant tumor growth inhibition while decreasing side effects.Thus,this work may open a new avenue for robust oral chemotherapy attractive for clinical translation.展开更多
Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have...Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have even become completely plugged with deposited sulfur within several months. Accurate prediction and effective management of sulfur deposition are crucial to the economic viability of sour gas reservoirs. In this paper, a dynamic flow experiment was carried out to investigate formation damage resulting from sulfur deposition using an improved experimental method. The core sample was extracted from the producing interval of the LG2 well, LG gas field in the Sichuan Basin. The experimental temperature was 26 °C and the initial pressure was 19 MPa. The displacement pressure continuously decreased from 19 to 10 MPa, and the depletion process lasted 15 days. Then the core was removed and dried. The core mass and core permeability were measured before and after experiments. Experimental results indicated that the core mass increased from 48.372 g before experiment to 48.386 g afterwards, while the core permeability reduced from 0.726 to 0.608 md during the experiment. Then the core was analyzed with a scanning electron microscope (SEM) and energy-dispersive X-ray mapping. The deposition pattern and micro-distribution of elemental sulfur was observed and the deposited elemental sulfur distributed as a film around the pore surface.展开更多
Hepatocellular carcinoma(HCC)is one of the most common malignancies,and its treatment is limited.With the understanding of key genes and signaling pathways in the occurrence and development of HCC,targeted drugs with ...Hepatocellular carcinoma(HCC)is one of the most common malignancies,and its treatment is limited.With the understanding of key genes and signaling pathways in the occurrence and development of HCC,targeted drugs with high selectivity and low toxicity have been developed continuously,bringing a variety of options for the treatment of advanced HCC.In this article,the research progress on representative drugs of targeted therapy and potential therapeutic targets for HCC are reviewed.展开更多
The research on surface texture is developing from single macro-texture to composite micro-nano texture.The current research on the anti-friction mechanism and theoretical models of textures is relatively weak.Studyin...The research on surface texture is developing from single macro-texture to composite micro-nano texture.The current research on the anti-friction mechanism and theoretical models of textures is relatively weak.Studying the characteristics of different types of surface textures and determining the applicable working conditions of each texture is the focus of current research.In this paper,a mathematical model of hydrodynamic lubrication is established based on Navier-Stokes equations.The FLUENT software is used to simulate and analyze the four texture models,explore the dynamic pressure lubrication characteristics of different texture types,and provide data support for texture optimization.The key variable values required by the mathematical model are obtained through the simulation data.The friction coefficient of the texture under different working conditions was measured through friction and wear experiments,and the mathematical model was verified by the experimental results.The research results show that circular texture is suitable for low to medium speed and high load conditions,chevron texture is suitable for medium to high speed and medium to high load conditions,groove texture is suitable for high speed and low load conditions,and composite texture is suitable for high speed and medium to high load conditions.Comparing the experimental results with the results obtained by the mathematical model,it is found that the two are basically the same in the ranking of the anti-friction performance of different textures,and there is an error of 10%−40%in the friction coefficient value.In this study,a mathematical model of hydrodynamic lubrication was proposed,and the solution method of the optimal surface texture model was determined.展开更多
The research on circularly polarized luminescence(CPL)has garnered significant attention in recent years due to its many potential applications.One aspect of this research involves the pursuit of chiral materials that...The research on circularly polarized luminescence(CPL)has garnered significant attention in recent years due to its many potential applications.One aspect of this research involves the pursuit of chiral materials that posess both high luminescence efficiency and dissymmetry factors.The investigation of CPL behavior is of paramount importance because the structural information of chiral luminescent systems in the excited state can be uncovered.The objective of this review is to offer a comprehensive overview of the latest advancements in the CPL research field,with a particular focus on the development of chiral emissive materials,including organic,inorganic,and hybrid substances.Furthermore,this review outlines the recent applications of these materials in areas such as displays,photoelectric devices,anticounterfeiting measures,and sensors.Finally,we highlight the primary challenges and potential prospects of CPL materials.Our aspiration is that this endeavor will contribute new perspectives and insights that further advancements in related research fields.展开更多
A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance, such as low friction coefficient and low wear rate. Al2...A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance, such as low friction coefficient and low wear rate. Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure. Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear. Al2O3/TiC ceramic was also cold pressed and sintered for comparison. Friction analysis of the two ceramics was then conducted via a wear-and-tear machine. Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum, respectively. Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite. Under the friction load, the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits. This process formed a smooth, self-lubricating film, which led to better anti-wear properties. Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.展开更多
A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding bro...A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding broadband eigenvalues, and DGMCM is an accurate model for range-dependent propagation in the frequency domain. Consequently, the proposed broadband model combining the Hamiltonian method and DGMCM has significant virtue in terms of both efficiency and accuracy. Numerical simulations are also provided. The numerical results indicate that the proposed model has a better performance over the broadband model using the Fourier synthesis and COUPLE, while retaining the same level of accuracy.展开更多
Numerical estimates of the components of yield strength of a high strength Fe-C-Mn-P-N-Si enameling steel were determined using empirical relationships between microstructure and yield strength. Results are reported f...Numerical estimates of the components of yield strength of a high strength Fe-C-Mn-P-N-Si enameling steel were determined using empirical relationships between microstructure and yield strength. Results are reported for both the hot rolled (HR) and cold rolled (CR) forms before and after simulating an enamel-fire anneal (EFA). To determine the solubilities of alloying elements, thermodynamic calculations were performed in combination with the considerations of process conditions and the element diffusivities. The results show that the main solid solution strengtheners were the elements Mn, Si, and P, while the elements C and N were nearly completely tied up as precipitates. The yield strength reduction, due to the EFA, resulted primarily from an increase in grain size and a decrease in dislocation density, and the EFA appeared to have a negligible effect on the element solubilities.展开更多
文摘The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers.Given challenges such as intricate data analysis,absence of effective assessment methodologies,real-time control strategies,and scarce knowledge of the factors influencing deep gas wells in the so-called flowback stage,a comprehensive study was undertaken on over 160 deep gas wells in Luzhou block utilizing linear flow models and advanced big data analytics techniques.The research results show that:(1)The flowback stage of a deep gas well presents the characteristics of late gas channeling,high flowback rate after gas channeling,low 30-day flowback rate,and high flowback rate corresponding to peak production;(2)The comprehensive parameter AcmKm1/2 in the flowback stage exhibits a strong correlation with the Estimated Ultimate Recovery(EUR),allowing for the establishment of a standardized chart to evaluate EUR classification in typical shale gas wells during this stage.This enables quantitative assessment of gas well EUR,providing valuable insights into production potential and performance;(3)The spacing range and the initial productivity of gas wells have a significant impact on the overall effectiveness of gas wells.Therefore,it is crucial to further explore rational well patterns and spacing,as well as optimize initial drainage and production technical strategies in order to improve their performance.
基金supported by the Anhui Engineering Technology Research Center of Biochemical Pharmaceutical(Bengbu Medical College)the National Natural Science Foundation of China(No.51803001)+1 种基金the Research Foundation of Education Department of Anhui Province of China(No.KJ2018ZD003,KJ2018A0006 and KJ2019A0015)the Academic and Technology Introduction Project of Anhui University(AU02303203).
文摘Currently,the dynamic erosive small molecule nano-prodrug is of great demand for oral chemotherapy,owing to its precise structure,high drug loading and improved oral bioavailability via overcoming various physiologic barriers in gastrointestinal tract,blood circulation and tumor tissues compared to other oral nanomedicines.Herein,this work highlights the successful development of pH-triggered dynamic erosive small molecule nano-prodrugs based on in vivo significant pH changes,which are synthesized via amide reaction between chlorambucil and star-shaped ortho esters.The precise nano-prodrugs exhibit extraordinarily high drug loading(68.16%),electric neutrality,strong hydrophobicity,and dynamic large-to-small size transition from gastrointestinal pH to tumoral pH.These favorable physicochemical properties can effectively facilitate gastrointestinal absorption,blood circulation stability,tumor accumulation,cellular uptake,and cytotoxicity,therefore achieving high oral relative bioavailability(358.72%)and significant tumor growth inhibition while decreasing side effects.Thus,this work may open a new avenue for robust oral chemotherapy attractive for clinical translation.
基金supported by the National High Technology Research and Development Program of China (863 Program) (No. 2007AA06Z209)the National Natural Science Foundation of China (No. 50974104,50774062 and 50474039)
文摘Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have even become completely plugged with deposited sulfur within several months. Accurate prediction and effective management of sulfur deposition are crucial to the economic viability of sour gas reservoirs. In this paper, a dynamic flow experiment was carried out to investigate formation damage resulting from sulfur deposition using an improved experimental method. The core sample was extracted from the producing interval of the LG2 well, LG gas field in the Sichuan Basin. The experimental temperature was 26 °C and the initial pressure was 19 MPa. The displacement pressure continuously decreased from 19 to 10 MPa, and the depletion process lasted 15 days. Then the core was removed and dried. The core mass and core permeability were measured before and after experiments. Experimental results indicated that the core mass increased from 48.372 g before experiment to 48.386 g afterwards, while the core permeability reduced from 0.726 to 0.608 md during the experiment. Then the core was analyzed with a scanning electron microscope (SEM) and energy-dispersive X-ray mapping. The deposition pattern and micro-distribution of elemental sulfur was observed and the deposited elemental sulfur distributed as a film around the pore surface.
基金the Research Project 2017 of Health and Family Planning Commission of Hunan Province(A2017015).
文摘Hepatocellular carcinoma(HCC)is one of the most common malignancies,and its treatment is limited.With the understanding of key genes and signaling pathways in the occurrence and development of HCC,targeted drugs with high selectivity and low toxicity have been developed continuously,bringing a variety of options for the treatment of advanced HCC.In this article,the research progress on representative drugs of targeted therapy and potential therapeutic targets for HCC are reviewed.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575234,51872122)Postdoctoral Science Foundation of China(Grant No.2017M620286)+3 种基金Key Research and Development Program of Shandong,Province,China(Grant No.2018CXGC0809)Major basic research projects of Shandong Natural Science Foundation(Grant No.ZR2020ZD06)Project of Shandong Province Higher,Educational Youth Innovation Science and Technology,Program(Grant No.2019KJB021)Experts from Taishan Scholars,and Youth Innovation in Science&Technology Support Plan of Shandong Province University.
文摘The research on surface texture is developing from single macro-texture to composite micro-nano texture.The current research on the anti-friction mechanism and theoretical models of textures is relatively weak.Studying the characteristics of different types of surface textures and determining the applicable working conditions of each texture is the focus of current research.In this paper,a mathematical model of hydrodynamic lubrication is established based on Navier-Stokes equations.The FLUENT software is used to simulate and analyze the four texture models,explore the dynamic pressure lubrication characteristics of different texture types,and provide data support for texture optimization.The key variable values required by the mathematical model are obtained through the simulation data.The friction coefficient of the texture under different working conditions was measured through friction and wear experiments,and the mathematical model was verified by the experimental results.The research results show that circular texture is suitable for low to medium speed and high load conditions,chevron texture is suitable for medium to high speed and medium to high load conditions,groove texture is suitable for high speed and low load conditions,and composite texture is suitable for high speed and medium to high load conditions.Comparing the experimental results with the results obtained by the mathematical model,it is found that the two are basically the same in the ranking of the anti-friction performance of different textures,and there is an error of 10%−40%in the friction coefficient value.In this study,a mathematical model of hydrodynamic lubrication was proposed,and the solution method of the optimal surface texture model was determined.
基金supported by the Chirality Major Research Plan of the National Natural Science Foundation of China(grant nos.92256304 and 92056204).
文摘The research on circularly polarized luminescence(CPL)has garnered significant attention in recent years due to its many potential applications.One aspect of this research involves the pursuit of chiral materials that posess both high luminescence efficiency and dissymmetry factors.The investigation of CPL behavior is of paramount importance because the structural information of chiral luminescent systems in the excited state can be uncovered.The objective of this review is to offer a comprehensive overview of the latest advancements in the CPL research field,with a particular focus on the development of chiral emissive materials,including organic,inorganic,and hybrid substances.Furthermore,this review outlines the recent applications of these materials in areas such as displays,photoelectric devices,anticounterfeiting measures,and sensors.Finally,we highlight the primary challenges and potential prospects of CPL materials.Our aspiration is that this endeavor will contribute new perspectives and insights that further advancements in related research fields.
基金supported by the National Natural Science Foundation for Young Scholars of China(No.51005100)China Postdoctoral Science Foundation(No.20110491572)Scientific and Technologic Development Program of Shandong Province(No.2012GGX10324)
文摘A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance, such as low friction coefficient and low wear rate. Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure. Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear. Al2O3/TiC ceramic was also cold pressed and sintered for comparison. Friction analysis of the two ceramics was then conducted via a wear-and-tear machine. Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum, respectively. Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite. Under the friction load, the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits. This process formed a smooth, self-lubricating film, which led to better anti-wear properties. Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.
基金supported by the National Natural Science Foundation of China(Grant No.11125420)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding broadband eigenvalues, and DGMCM is an accurate model for range-dependent propagation in the frequency domain. Consequently, the proposed broadband model combining the Hamiltonian method and DGMCM has significant virtue in terms of both efficiency and accuracy. Numerical simulations are also provided. The numerical results indicate that the proposed model has a better performance over the broadband model using the Fourier synthesis and COUPLE, while retaining the same level of accuracy.
基金financially supported by AO Smith Corporate Technology Center,USA
文摘Numerical estimates of the components of yield strength of a high strength Fe-C-Mn-P-N-Si enameling steel were determined using empirical relationships between microstructure and yield strength. Results are reported for both the hot rolled (HR) and cold rolled (CR) forms before and after simulating an enamel-fire anneal (EFA). To determine the solubilities of alloying elements, thermodynamic calculations were performed in combination with the considerations of process conditions and the element diffusivities. The results show that the main solid solution strengtheners were the elements Mn, Si, and P, while the elements C and N were nearly completely tied up as precipitates. The yield strength reduction, due to the EFA, resulted primarily from an increase in grain size and a decrease in dislocation density, and the EFA appeared to have a negligible effect on the element solubilities.