Brassica rapa comprises several important cultivated vegetables and oil crops.Current reference genome assemblies of Brassica rapa are quite fragmented and not highly contiguous,thereby limiting extensive genetic and ...Brassica rapa comprises several important cultivated vegetables and oil crops.Current reference genome assemblies of Brassica rapa are quite fragmented and not highly contiguous,thereby limiting extensive genetic and genomic analyses.Here,we report an improved assembly of the B.rapa genome(v3.0)using single-molecule sequencing,optical mapping,and chromosome conformation capture technologies(Hi-C).Relative to the previous reference genomes,our assembly features a contig N50 size of 1.45 Mb,representing a~30-fold improvement.We also identified a new event that occurred in the B.rapa genome~1.2 million years ago,when a long terminal repeat retrotransposon(LTR-RT)expanded.Further analysis refined the relationship of genome blocks and accurately located the centromeres in the B.rapa genome.The B.rapa genome v3.0 will serve as an important community resource for future genetic and genomic studies in B.rapa.This resource will facilitate breeding efforts in B.rapa,as well as comparative genomic analysis with other Brassica species.展开更多
Since the publication of this article,the authors have noticed that the total gene models(45,985),tandem arrays(2077),tandem genes(4963),redundancy removed(43,099),syntenic genes(39,858),nonsyntenic genes(3241),genes ...Since the publication of this article,the authors have noticed that the total gene models(45,985),tandem arrays(2077),tandem genes(4963),redundancy removed(43,099),syntenic genes(39,858),nonsyntenic genes(3241),genes on chromosomes(45,411),genes on scaffolds(574)of B.rapa reference genome v3.0 were mistaken in the article.展开更多
Bivalves are species-rich mollusks with prominent protective roles in coastal ecosystems.Across these ancient lineages,colony-founding larvae anchor themselves either by byssus production or by cemented attachment.The...Bivalves are species-rich mollusks with prominent protective roles in coastal ecosystems.Across these ancient lineages,colony-founding larvae anchor themselves either by byssus production or by cemented attachment.The latter mode of sessile life is strongly molded by left-right shell asymmetry during larval development of Ostreoida oysters such as Crassostrea hongkongensis.Here,we sequenced the genome of C.hongkongensis in high resolution and compared it to reference bivalve genomes to unveil genomic determinants driving cemented attachment and shell asymmetry.Importantly,loss of the homeobox gene Antennapedia(Antp)and broad expansion of lineagespecific extracellular gene families are implicated in a shift from byssal to cemented attachment in bivalves.Comparative transcriptomic analysis shows a conspicuous divergence between leftright asymmetrical C.hongkongensis and symmetrical Pinctada fucata in their expression profiles.Especially,a couple of orthologous transcription factor genes and lineage-specific shell-related gene families including that encoding tyrosinases are elevated,and may cooperatively govern asymmetrical shell formation in Ostreoida oysters.展开更多
Paper mulberry(Broussonetia papyrifera)is a well-known woody tree historically used for Cai Lun papermaking,one of the four great inventions of ancient China.More recently,Paper mulberry has also been used as forage t...Paper mulberry(Broussonetia papyrifera)is a well-known woody tree historically used for Cai Lun papermaking,one of the four great inventions of ancient China.More recently,Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents.In this study,we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches,including Illumina and PacBio sequencing platform as well as Hi-C,optical,and genetic maps.The assembled Paper mulberry genome consists of 386.83 Mb,which is close to the estimated size,and 99.25%(383.93 Mb)of the assembly was assigned to 13 pseudochromosomes.Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families,respectively,accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry.Moreover,the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine,forage,papermaking,and barkcloth making.We also identified the rootassociated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation.Collectively,these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition.Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making,and as forage.These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide.展开更多
Rapeseed (Brassica napus),an important oilseed crop,has adapted to diverse climate zones and latitudes by forming three main ecotype groups,namely winter,semiwinter,and spring types. However,genetic variations underly...Rapeseed (Brassica napus),an important oilseed crop,has adapted to diverse climate zones and latitudes by forming three main ecotype groups,namely winter,semiwinter,and spring types. However,genetic variations underlying the divergence of these ecotypes are largely unknown. Here,we report the global pattern of genetic polymorphisms in rapeseed determined by resequencing a worldwide collection of 991 germplasm accessions.A total of 5.56 and 5.53 million singlenucleotide polymorphisms (SNPs)as Well as 1.86 and 1.92 million InDels were identified by mapping reads to the reference genomes of "Darmor-bzh"and "Tapidor,"respectively.We generated a map of allelic drift paths that shows splits and mixtures of the main populations,and revealed an asymmetric evolution of the two subgenomes of B.napus by calculating the genetic diversity and linkage disequilibrium parameters.Selective-sweep analysis revealed genetic changes in genes orthologous to those regulating various aspects of plant development and response to stresses.A genome-wide association study identified SNPs in the promoter regions of FLOWERING LOCUS T and FLOWERING LOCUS C orthologs that corresponded to the different rapeseed ecotype groups. Our study provides important insights into the genomic footprints of rapeseed evolution and flowering-time divergence among three ecotype groups,and will facilitate screening of molecular markers for accelerating rapeseed breeding.展开更多
基金This work is supported by the National Natural Science Foundation of China(NSFC grants 31630068 and 31722048)the National Program on Key Research Project(2016YFD0100307)+1 种基金the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences,the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China,the Prospect of Shandong Seed Project,China(Shandong Gov.(2015)Reference No.212)the China Scholarship Council(CSC)(No.201503250081).
文摘Brassica rapa comprises several important cultivated vegetables and oil crops.Current reference genome assemblies of Brassica rapa are quite fragmented and not highly contiguous,thereby limiting extensive genetic and genomic analyses.Here,we report an improved assembly of the B.rapa genome(v3.0)using single-molecule sequencing,optical mapping,and chromosome conformation capture technologies(Hi-C).Relative to the previous reference genomes,our assembly features a contig N50 size of 1.45 Mb,representing a~30-fold improvement.We also identified a new event that occurred in the B.rapa genome~1.2 million years ago,when a long terminal repeat retrotransposon(LTR-RT)expanded.Further analysis refined the relationship of genome blocks and accurately located the centromeres in the B.rapa genome.The B.rapa genome v3.0 will serve as an important community resource for future genetic and genomic studies in B.rapa.This resource will facilitate breeding efforts in B.rapa,as well as comparative genomic analysis with other Brassica species.
文摘Since the publication of this article,the authors have noticed that the total gene models(45,985),tandem arrays(2077),tandem genes(4963),redundancy removed(43,099),syntenic genes(39,858),nonsyntenic genes(3241),genes on chromosomes(45,411),genes on scaffolds(574)of B.rapa reference genome v3.0 were mistaken in the article.
基金support from the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),China(Grant No. GML2019ZD0407)the Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese Academy of Science (Grant No. COMS2019Q11)+6 种基金the National Natural Science Foundation of China (Grant Nos. 32073002 and 31902404)the China Agricultural Research System (Grant No. CARS-49)the Science and Technology Program of Guangzhou, China (Grant No. 201804020073)Natural Science Foundation of Guangdong, China (Grant No. 2020A1515011533)the Program of the Pearl River Young Talents of Science and Technology in Guangzhou of China (Grant No. 201806010003)the Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (Grant Nos. ISEE2018PY01, ISEE2018PY03, and ISEE2018ZD01)the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2017B030314052 and 201707010177)
文摘Bivalves are species-rich mollusks with prominent protective roles in coastal ecosystems.Across these ancient lineages,colony-founding larvae anchor themselves either by byssus production or by cemented attachment.The latter mode of sessile life is strongly molded by left-right shell asymmetry during larval development of Ostreoida oysters such as Crassostrea hongkongensis.Here,we sequenced the genome of C.hongkongensis in high resolution and compared it to reference bivalve genomes to unveil genomic determinants driving cemented attachment and shell asymmetry.Importantly,loss of the homeobox gene Antennapedia(Antp)and broad expansion of lineagespecific extracellular gene families are implicated in a shift from byssal to cemented attachment in bivalves.Comparative transcriptomic analysis shows a conspicuous divergence between leftright asymmetrical C.hongkongensis and symmetrical Pinctada fucata in their expression profiles.Especially,a couple of orthologous transcription factor genes and lineage-specific shell-related gene families including that encoding tyrosinases are elevated,and may cooperatively govern asymmetrical shell formation in Ostreoida oysters.
基金the National Natural Science Foundation of China(31770360,31870247)the Poverty Relief Project of the Chinese Academy of Sciences(KFJ-FP-24)the Huimin Technology Demonstration Project of the Natio nal Modem Agricultural Science and Technology Achievements City(Z151100001015008).
文摘Paper mulberry(Broussonetia papyrifera)is a well-known woody tree historically used for Cai Lun papermaking,one of the four great inventions of ancient China.More recently,Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents.In this study,we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches,including Illumina and PacBio sequencing platform as well as Hi-C,optical,and genetic maps.The assembled Paper mulberry genome consists of 386.83 Mb,which is close to the estimated size,and 99.25%(383.93 Mb)of the assembly was assigned to 13 pseudochromosomes.Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families,respectively,accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry.Moreover,the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine,forage,papermaking,and barkcloth making.We also identified the rootassociated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation.Collectively,these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition.Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making,and as forage.These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide.
基金the National Key Basic Research Project (no. 2015CB150205)Natural Science Foundation of China,China (no. 31671597,31370313,31670283)+1 种基金Sino-German Science Center for Research Promotion,China (GZ 1099)Jiangsu Collaborative Innovation Center for Modern Crop Production,China,and the Singapore National Research Foundation Investigatorship Program,Singapore (NRF-NRFI2016-02).
文摘Rapeseed (Brassica napus),an important oilseed crop,has adapted to diverse climate zones and latitudes by forming three main ecotype groups,namely winter,semiwinter,and spring types. However,genetic variations underlying the divergence of these ecotypes are largely unknown. Here,we report the global pattern of genetic polymorphisms in rapeseed determined by resequencing a worldwide collection of 991 germplasm accessions.A total of 5.56 and 5.53 million singlenucleotide polymorphisms (SNPs)as Well as 1.86 and 1.92 million InDels were identified by mapping reads to the reference genomes of "Darmor-bzh"and "Tapidor,"respectively.We generated a map of allelic drift paths that shows splits and mixtures of the main populations,and revealed an asymmetric evolution of the two subgenomes of B.napus by calculating the genetic diversity and linkage disequilibrium parameters.Selective-sweep analysis revealed genetic changes in genes orthologous to those regulating various aspects of plant development and response to stresses.A genome-wide association study identified SNPs in the promoter regions of FLOWERING LOCUS T and FLOWERING LOCUS C orthologs that corresponded to the different rapeseed ecotype groups. Our study provides important insights into the genomic footprints of rapeseed evolution and flowering-time divergence among three ecotype groups,and will facilitate screening of molecular markers for accelerating rapeseed breeding.